Timezone: »
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendation is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale data set consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a data set consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior.
Author Information
Raymond Li (Polytechnique Montréal)
Samira Ebrahimi Kahou (Microsoft)
Hannes Schulz (Microsoft Research, Montreal)
Vincent Michalski (Université de Montréal)
Laurent Charlin (MILA / U.Montreal)
Chris Pal (MILA, Polytechnique Montréal, Element AI)
More from the Same Authors
-
2021 : Shift and Scale is Detrimental To Few-Shot Transfer »
Moslem Yazdanpanah · Christian Desrosiers · Mohammad Havaei · Eugene Belilovsky · Samira Ebrahimi Kahou -
2021 : Learning Robust Dynamics through Variational Sparse Gating »
Arnav Kumar Jain · Shivakanth Sujit · Shruti Joshi · Vincent Michalski · Danijar Hafner · Samira Ebrahimi Kahou -
2022 : Attention for Compositional Modularity »
Oleksiy Ostapenko · Pau Rodriguez · Alexandre Lacoste · Laurent Charlin -
2022 : BERT on a Data Diet: Finding Important Examples by Gradient-Based Pruning »
Mohsen Fayyaz · Ehsan Aghazadeh · Seyed MohammadAli Modarressi · Mohammad Taher Pilehvar · Yadollah Yaghoobzadeh · Samira Ebrahimi Kahou -
2022 : Bridging the Gap Between Offline and Online Reinforcement Learning Evaluation Methodologies »
Shivakanth Sujit · Pedro Braga · Jörg Bornschein · Samira Ebrahimi Kahou -
2022 : Learning from uncertain concepts via test time interventions »
Ivaxi Sheth · Aamer Abdul Rahman · Laya Rafiee Sevyeri · Mohammad Havaei · Samira Ebrahimi Kahou -
2022 : Locally Constrained Representations in Reinforcement Learning »
Somjit Nath · Samira Ebrahimi Kahou -
2022 : Prioritizing Samples in Reinforcement Learning with Reducible Loss »
Shivakanth Sujit · Somjit Nath · Pedro Braga · Samira Ebrahimi Kahou -
2022 : Pitfalls of conditional computation for multi-modal learning »
Ivaxi Sheth · Mohammad Havaei · Samira Ebrahimi Kahou -
2023 Poster: Joint Bayesian Inference of Graphical Structure and Parameters with a Single Generative Flow Network »
Tristan Deleu · Mizu Nishikawa-Toomey · Jithendaraa Subramanian · Nikolay Malkin · Laurent Charlin · Yoshua Bengio -
2023 Poster: Auxiliary Losses for Learning Generalizable Concept-based Model »
Ivaxi Sheth · Samira Ebrahimi Kahou -
2023 Poster: Prioritizing Samples in Reinforcement Learning with Reducible Loss »
Shivakanth Sujit · Somjit Nath · Pedro Braga · Samira Ebrahimi Kahou -
2022 Poster: Learning Robust Dynamics through Variational Sparse Gating »
Arnav Kumar Jain · Shivakanth Sujit · Shruti Joshi · Vincent Michalski · Danijar Hafner · Samira Ebrahimi Kahou -
2021 : From model compression to self-distillation: a review »
Samira Ebrahimi Kahou -
2021 : Machine Learning for Combinatorial Optimization + Q&A »
Maxime Gasse · Simon Bowly · Chris Cameron · Quentin Cappart · Jonas Charfreitag · Laurent Charlin · Shipra Agrawal · Didier Chetelat · Justin Dumouchelle · Ambros Gleixner · Aleksandr Kazachkov · Elias Khalil · Pawel Lichocki · Andrea Lodi · Miles Lubin · Christopher Morris · Dimitri Papageorgiou · Augustin Parjadis · Sebastian Pokutta · Antoine Prouvost · Yuandong Tian · Lara Scavuzzo · Giulia Zarpellon -
2021 Poster: Continual Learning via Local Module Composition »
Oleksiy Ostapenko · Pau Rodriguez · Massimo Caccia · Laurent Charlin -
2021 Poster: Pretraining Representations for Data-Efficient Reinforcement Learning »
Max Schwarzer · Nitarshan Rajkumar · Michael Noukhovitch · Ankesh Anand · Laurent Charlin · R Devon Hjelm · Philip Bachman · Aaron Courville -
2020 : Spotlight Talk: Ebrahimi Kahou »
Samira Ebrahimi Kahou -
2020 Poster: Promoting Coordination through Policy Regularization in Multi-Agent Deep Reinforcement Learning »
Julien Roy · Paul Barde · Félix Harvey · Derek Nowrouzezahrai · Chris Pal -
2020 Poster: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Spotlight: Adversarial Soft Advantage Fitting: Imitation Learning without Policy Optimization »
Paul Barde · Julien Roy · Wonseok Jeon · Joelle Pineau · Chris Pal · Derek Nowrouzezahrai -
2020 Poster: Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning »
Massimo Caccia · Pau Rodriguez · Oleksiy Ostapenko · Fabrice Normandin · Min Lin · Lucas Page-Caccia · Issam Hadj Laradji · Irina Rish · Alexandre Lacoste · David Vázquez · Laurent Charlin -
2020 Poster: Synbols: Probing Learning Algorithms with Synthetic Datasets »
Alexandre Lacoste · Pau Rodríguez López · Frederic Branchaud-Charron · Parmida Atighehchian · Massimo Caccia · Issam Hadj Laradji · Alexandre Drouin · Matthew Craddock · Laurent Charlin · David Vázquez -
2020 Session: Orals & Spotlights Track 16: Continual/Meta/Misc Learning »
Laurent Charlin · Cedric Archambeau -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 Poster: Online Continual Learning with Maximal Interfered Retrieval »
Rahaf Aljundi · Eugene Belilovsky · Tinne Tuytelaars · Laurent Charlin · Massimo Caccia · Min Lin · Lucas Page-Caccia -
2019 Poster: Neural Multisensory Scene Inference »
Jae Hyun Lim · Pedro O. Pinheiro · Negar Rostamzadeh · Chris Pal · Sungjin Ahn -
2019 Poster: On Adversarial Mixup Resynthesis »
Christopher Beckham · Sina Honari · Alex Lamb · Vikas Verma · Farnoosh Ghadiri · R Devon Hjelm · Yoshua Bengio · Chris Pal -
2019 Poster: Exact Combinatorial Optimization with Graph Convolutional Neural Networks »
Maxime Gasse · Didier Chetelat · Nicola Ferroni · Laurent Charlin · Andrea Lodi -
2018 Poster: Unsupervised Depth Estimation, 3D Face Rotation and Replacement »
Joel Ruben Antony Moniz · Christopher Beckham · Simon Rajotte · Sina Honari · Chris Pal -
2018 Poster: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Spotlight: Sparse Attentive Backtracking: Temporal Credit Assignment Through Reminding »
Nan Rosemary Ke · Anirudh Goyal · Olexa Bilaniuk · Jonathan Binas · Michael Mozer · Chris Pal · Yoshua Bengio -
2018 Poster: Towards Text Generation with Adversarially Learned Neural Outlines »
Sandeep Subramanian · Sai Rajeswar Mudumba · Alessandro Sordoni · Adam Trischler · Aaron Courville · Chris Pal -
2017 Poster: ExtremeWeather: A large-scale climate dataset for semi-supervised detection, localization, and understanding of extreme weather events »
Evan Racah · Christopher Beckham · Tegan Maharaj · Samira Ebrahimi Kahou · Mr. Prabhat · Chris Pal -
2017 Demonstration: A Deep Reinforcement Learning Chatbot »
Iulian Vlad Serban · Chinnadhurai Sankar · Mathieu Germain · Saizheng Zhang · Zhouhan Lin · Sandeep Subramanian · Taesup Kim · Michael Pieper · Sarath Chandar · Nan Rosemary Ke · Sai Rajeswar Mudumba · Alexandre de Brébisson · Jose Sotelo · Dendi A Suhubdy · Vincent Michalski · Joelle Pineau · Yoshua Bengio -
2014 Poster: Modeling Deep Temporal Dependencies with Recurrent "Grammar Cells" »
Vincent Michalski · Roland Memisevic · Kishore Konda -
2014 Poster: Content-based recommendations with Poisson factorization »
Prem Gopalan · Laurent Charlin · David Blei -
2006 Poster: Automated Hierarchy Discovery for Planning in Partially Observable Domains »
Laurent Charlin · Pascal Poupart · Romy Shioda