`

Timezone: »

 
Poster
Low-Rank Tucker Decomposition of Large Tensors Using TensorSketch
Osman Asif Malik · Stephen Becker

Tue Dec 04 02:00 PM -- 04:00 PM (PST) @ Room 517 AB #147

We propose two randomized algorithms for low-rank Tucker decomposition of tensors. The algorithms, which incorporate sketching, only require a single pass of the input tensor and can handle tensors whose elements are streamed in any order. To the best of our knowledge, ours are the only algorithms which can do this. We test our algorithms on sparse synthetic data and compare them to multiple other methods. We also apply one of our algorithms to a real dense 38 GB tensor representing a video and use the resulting decomposition to correctly classify frames containing disturbances.

Author Information

Osman Asif Malik (University of Colorado Boulder)
Stephen Becker (University of Colorado)

More from the Same Authors

  • 2019 : Poster Session #1 »
    Adarsh Jamadandi · Sophia Sanborn · Huaxiu Yao · Chen Cai · Yu Chen · Jean-Marc Andreoli · Niklas Stoehr · Shih-Yang Su · Tony Duan · Fábio Ferreira · Davide Belli · Amit Boyarski · Ze Ye · Elahe Ghalebi · Arindam Sarkar · MAHMOUD KHADEMI · Evgeniy Faerman · Joey Bose · Jiaqi Ma · Lin Meng · Seyed Mehran Kazemi · Guangtao Wang · Tong Wu · Yuexin Wu · Chaitanya Joshi · Marc Brockschmidt · Daniele Zambon · Colin Graber · Rafaël Van Belle · Osman Asif Malik · Xavier Glorot · Mario Krenn · Chris Cameron · Binxuan Huang · George Stoica · Alexia Toumpa