Timezone: »
Approximate Bayesian computation (ABC) is an important methodology for Bayesian inference when the likelihood function is intractable. Sampling-based ABC algorithms such as rejection- and K2-ABC are inefficient when the parameters have high dimensions, while the regression-based algorithms such as K- and DR-ABC are hard to scale. In this paper, we introduce an optimization-based ABC framework that addresses these deficiencies. Leveraging a generative model for posterior and joint distribution matching, we show that ABC can be framed as saddle point problems, whose objectives can be accessed directly with samples. We present the predictive ABC algorithm (P-ABC), and provide a probabilistically approximately correct (PAC) bound that guarantees its learning consistency. Numerical experiment shows that P-ABC outperforms both K2- and DR-ABC significantly.
Author Information
Yingxiang Yang (University of Illinois at Urbana Champaign)
Bo Dai (Google Brain)
Negar Kiyavash (Georgia Tech)
Niao He (UIUC)
More from the Same Authors
-
2020 Poster: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Yingxiang Yang · Negar Kiyavash · Le Song · Niao He -
2020 Spotlight: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Yingxiang Yang · Negar Kiyavash · Le Song · Niao He -
2019 Workshop: Bridging Game Theory and Deep Learning »
Ioannis Mitliagkas · Gauthier Gidel · Niao He · Reyhane Askari Hemmat · N H · Nika Haghtalab · Simon Lacoste-Julien -
2019 Workshop: The Optimization Foundations of Reinforcement Learning »
Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White -
2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans -
2019 Poster: Learning Positive Functions with Pseudo Mirror Descent »
Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He -
2019 Spotlight: Learning Positive Functions with Pseudo Mirror Descent »
Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He -
2018 Poster: Cooperative neural networks (CoNN): Exploiting prior independence structure for improved classification »
Harsh Shrivastava · Eugene Bart · Bob Price · Hanjun Dai · Bo Dai · Srinivas Aluru -
2018 Poster: Multi-domain Causal Structure Learning in Linear Systems »
AmirEmad Ghassami · Negar Kiyavash · Biwei Huang · Kun Zhang -
2018 Poster: Coupled Variational Bayes via Optimization Embedding »
Bo Dai · Hanjun Dai · Niao He · Weiyang Liu · Zhen Liu · Jianshu Chen · Lin Xiao · Le Song -
2018 Poster: Quadratic Decomposable Submodular Function Minimization »
Pan Li · Niao He · Olgica Milenkovic -
2018 Poster: Learning towards Minimum Hyperspherical Energy »
Weiyang Liu · Rongmei Lin · Zhen Liu · Lixin Liu · Zhiding Yu · Bo Dai · Le Song -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang -
2017 Poster: Online Learning for Multivariate Hawkes Processes »
Yingxiang Yang · Jalal Etesami · Niao He · Negar Kiyavash -
2016 Workshop: OPT 2016: Optimization for Machine Learning »
Suvrit Sra · Francis Bach · Sashank J. Reddi · Niao He -
2014 Poster: Scalable Kernel Methods via Doubly Stochastic Gradients »
Bo Dai · Bo Xie · Niao He · Yingyu Liang · Anant Raj · Maria-Florina F Balcan · Le Song -
2013 Poster: Robust Low Rank Kernel Embeddings of Multivariate Distributions »
Le Song · Bo Dai