Timezone: »
Learning to insert an object instance into an image in a semantically coherent manner is a challenging and interesting problem. Solving it requires (a) determining a location to place an object in the scene and (b) determining its appearance at the location. Such an object insertion model can potentially facilitate numerous image editing and scene parsing applications. In this paper, we propose an end-to-end trainable neural network for the task of inserting an object instance mask of a specified class into the semantic label map of an image. Our network consists of two generative modules where one determines where the inserted object mask should be (i.e., location and scale) and the other determines what the object mask shape (and pose) should look like. The two modules are connected together via a spatial transformation network and jointly trained. We devise a learning procedure that leverage both supervised and unsupervised data and show our model can insert an object at diverse locations with various appearances. We conduct extensive experimental validations with comparisons to strong baselines to verify the effectiveness of the proposed network.
Author Information
Donghoon Lee (Seoul National University)
Sifei Liu (NVIDIA)
Jinwei Gu (Nvidia)
Ming-Yu Liu (NVIDIA)
Ming-Hsuan Yang (UC Merced / Google)
Jan Kautz (NVIDIA)
More from the Same Authors
-
2020 Poster: NVAE: A Deep Hierarchical Variational Autoencoder »
Arash Vahdat · Jan Kautz -
2020 Spotlight: NVAE: A Deep Hierarchical Variational Autoencoder »
Arash Vahdat · Jan Kautz -
2020 Poster: Online Adaptation for Consistent Mesh Reconstruction in the Wild »
Xueting Li · Sifei Liu · Shalini De Mello · Kihwan Kim · Xiaolong Wang · Ming-Hsuan Yang · Jan Kautz -
2020 Poster: Convolutional Tensor-Train LSTM for Spatio-Temporal Learning »
Jiahao Su · Wonmin Byeon · Jean Kossaifi · Furong Huang · Jan Kautz · Anima Anandkumar -
2019 Poster: Quadratic Video Interpolation »
Xiangyu Xu · Li Siyao · Wenxiu Sun · Qian Yin · Ming-Hsuan Yang -
2019 Spotlight: Quadratic Video Interpolation »
Xiangyu Xu · Li Siyao · Wenxiu Sun · Qian Yin · Ming-Hsuan Yang -
2019 Poster: Few-shot Video-to-Video Synthesis »
Ting-Chun Wang · Ming-Yu Liu · Andrew Tao · Guilin Liu · Bryan Catanzaro · Jan Kautz -
2019 Poster: Joint-task Self-supervised Learning for Temporal Correspondence »
Xueting Li · Sifei Liu · Shalini De Mello · Xiaolong Wang · Jan Kautz · Ming-Hsuan Yang -
2019 Poster: Dancing to Music »
Hsin-Ying Lee · Xiaodong Yang · Ming-Yu Liu · Ting-Chun Wang · Yu-Ding Lu · Ming-Hsuan Yang · Jan Kautz -
2018 Poster: Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation »
Wenqi Ren · Jiawei Zhang · Lin Ma · Jinshan Pan · Xiaochun Cao · Wangmeng Zuo · Wei Liu · Ming-Hsuan Yang -
2018 Poster: Video-to-Video Synthesis »
Ting-Chun Wang · Ming-Yu Liu · Jun-Yan Zhu · Guilin Liu · Andrew Tao · Jan Kautz · Bryan Catanzaro -
2018 Poster: Deep Attentive Tracking via Reciprocative Learning »
Shi Pu · YIBING SONG · Chao Ma · Honggang Zhang · Ming-Hsuan Yang -
2017 Poster: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Spotlight: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Poster: Learning Affinity via Spatial Propagation Networks »
Sifei Liu · Shalini De Mello · Jinwei Gu · Guangyu Zhong · Ming-Hsuan Yang · Jan Kautz -
2017 Poster: Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks »
Wei-Sheng Lai · Jia-Bin Huang · Ming-Hsuan Yang -
2017 Poster: Universal Style Transfer via Feature Transforms »
Yijun Li · Chen Fang · Jimei Yang · Zhaowen Wang · Xin Lu · Ming-Hsuan Yang -
2016 Poster: Coupled Generative Adversarial Networks »
Ming-Yu Liu · Oncel Tuzel -
2015 Poster: Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis »
Jimei Yang · Scott E Reed · Ming-Hsuan Yang · Honglak Lee