Timezone: »
Measuring similarities between unlabeled time series trajectories is an important problem in many domains such as medicine, economics, and vision. It is often unclear what is the appropriate metric to use because of the complex nature of noise in the trajectories (e.g. different sampling rates or outliers). Experts typically hand-craft or manually select a specific metric, such as Dynamic Time Warping (DTW), to apply on their data. In this paper, we propose an end-to-end framework, autowarp, that optimizes and learns a good metric given unlabeled trajectories. We define a flexible and differentiable family of warping metrics, which encompasses common metrics such as DTW, Edit Distance, Euclidean, etc. Autowarp then leverages the representation power of sequence autoencoders to optimize for a member of this warping family. The output is an metric which is easy to interpret and can be robustly learned from relatively few trajectories. In systematic experiments across different domains, we show that autowarp often outperforms hand-crafted trajectory similarity metrics.
Author Information
Abubakar Abid (Stanford)
James Zou (Stanford University)
More from the Same Authors
-
2022 : Protein structure generation via folding diffusion »
Kevin Wu · Kevin Yang · Rianne van den Berg · James Zou · Alex X Lu · Ava Soleimany -
2022 : Predicting Immune Escape with Pretrained Protein Language Model Embeddings »
Kyle Swanson · Howard Chang · James Zou -
2022 : DrML: Diagnosing and Rectifying Vision Models using Language »
Yuhui Zhang · Jeff Z. HaoChen · Shih-Cheng Huang · Kuan-Chieh Wang · James Zou · Serena Yeung -
2020 Poster: Neuron Shapley: Discovering the Responsible Neurons »
Amirata Ghorbani · James Zou -
2020 Poster: FrugalML: How to use ML Prediction APIs more accurately and cheaply »
Lingjiao Chen · Matei Zaharia · James Zou -
2020 Oral: FrugalML: How to use ML Prediction APIs more accurately and cheaply »
Lingjiao Chen · Matei Zaharia · James Zou -
2020 : Policy Panel »
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab -
2020 : Investigating Anti-Muslim Bias in GPT-3 through Words, Images, & Stories »
Abubakar Abid -
2020 Poster: MOPO: Model-based Offline Policy Optimization »
Tianhe Yu · Garrett Thomas · Lantao Yu · Stefano Ermon · James Zou · Sergey Levine · Chelsea Finn · Tengyu Ma -
2019 : Phenotype »
Nir HaCohen · David Reshef · Matthew Johnson · Sam Morris · Aurel Nagy · Gokcen Eraslan · Meromit Singer · Eliezer Van Allen · Smita Krishnaswamy · Casey Greene · Scott Linderman · Alexander Wiltschko · Dylan Kotliar · James Zou · Brendan Bulik-Sullivan -
2019 Poster: Towards Automatic Concept-based Explanations »
Amirata Ghorbani · James Wexler · James Zou · Been Kim -
2017 : Interpretation of Neural Networks is Fragile »
Abubakar Abid