Timezone: »
Author Information
James A Preiss (University of Southern California)
Alexander Grishin (National Research University Higher School of Economics, Samsung Lab)
Ville Kyrki (Aalto University)
Ville Kyrki is since 2012 Associate Professor in Automation Technology at School of Electrical Engineering at Aalto University (Helsinki, Finland) where he serves as the head of the Intelligent Robotics group. Until 2012 he was Professor in computer science at Lappeenranta University of Technology (Lappeenranta, Finland).
Pol Moreno Comellas (DeepMind)
Akshay Narayan (National University of Singapore)
Tze-Yun Leong (National University of Singapore)
Yongxi Tan (Huawei R&D USA (Bridgewater, NJ))
Lilian Weng (OpenAI)
Lilian Weng is working at OpenAI over a variety of research and applied projects. In the Robotics team, she worked on several challenging robotic manipulation tasks, including solving a fully scrambled Rubik's cube with a single robot hand, via deep reinforcement learning and sim2real transfer techniques. Currently she leads the Applied AI Research team to use powerful language models to solve real-world applications. Her research interests are quite broad, as she writes about various topics in deep learning in her highly viewed ML blog https://lilianweng.github.io/lil-log/.
Toshiharu Sugawara (Waseda University)
Kenny Young (University of Alberta)
Tianmin Shu (University of California, Los Angeles)
Jonas Gehring (Facebook AI Research)
Ahmad Beirami (Electronic Arts)
Ahmad Beirami is a research scientist at Facebook AI, leading research to power the next generation of virtual digital assistants with AR/VR capabilities. His research broadly involves learning models with robustness and fairness considerations in large-scale systems. Prior to that, he led the AI agent research program for automated playtesting of video games at Electronic Arts. Before moving to industry in 2018, he held a joint postdoctoral fellow position at Harvard & MIT, focused on problems in the intersection of core machine learning and information theory. He is the recipient of the 2015 Sigma Xi Best PhD Thesis Award from Georgia Tech, for his work on the fundamental limits of efficient communication over IoT networks.
Chris Amato (Northeastern University)
sammie katt (northeastern university)
Andrea Baisero (Northeastern University)
Arseny Kuznetsov (Samsung AI Center Moscow)
Jan Humplik (IST Austria)
Vladimír Petrík (Aalto University)
More from the Same Authors
-
2021 : FeO2: Federated Learning with Opt-Out Differential Privacy »
Nasser Aldaghri · Hessam Mahdavifar · Ahmad Beirami -
2021 : Towards Incorporating Rich Social Interactions Into MDPs »
Ravi Tejwani · Yen-Ling Kuo · Tianmin Shu · Bennett Stankovits · Dan Gutfreund · Josh Tenenbaum · Boris Katz · Andrei Barbu -
2022 : Deep Transformer Q-Networks for Partially Observable Reinforcement Learning »
Kevin Esslinger · Robert Platt · Christopher Amato -
2022 : A Stochastic Optimization Framework for Fair Risk Minimization »
Andrew Lowy · Sina Baharlouei · Rakesh Pavan · Meisam Razaviyayn · Ahmad Beirami -
2022 : The Benefits of Model-Based Generalization in Reinforcement Learning »
Kenny Young · Aditya Ramesh · Louis Kirsch · Jürgen Schmidhuber -
2022 : Co-Imitation: Learning Design and Behaviour by Imitation »
Chang Rajani · Karol Arndt · David Blanco-Mulero · Kevin Sebastian Luck · Ville Kyrki -
2022 Poster: Asynchronous Actor-Critic for Multi-Agent Reinforcement Learning »
Yuchen Xiao · Weihao Tan · Christopher Amato -
2022 Poster: An Adaptive Kernel Approach to Federated Learning of Heterogeneous Causal Effects »
Thanh Vinh Vo · Arnab Bhattacharyya · Young Lee · Tze-Yun Leong -
2022 Poster: Doubly-Asynchronous Value Iteration: Making Value Iteration Asynchronous in Actions »
Tian Tian · Kenny Young · Richard Sutton -
2022 Poster: Shield Decentralization for Safe Multi-Agent Reinforcement Learning »
Daniel Melcer · Christopher Amato · Stavros Tripakis -
2021 : (Live) Panel Discussion: Cooperative AI »
Kalesha Bullard · Allan Dafoe · Fei Fang · Chris Amato · Elizabeth M. Adams -
2021 Poster: Hierarchical Skills for Efficient Exploration »
Jonas Gehring · Gabriel Synnaeve · Andreas Krause · Nicolas Usunier -
2021 : Techniques and Conclusion »
Lilian Weng · Jong Wook Kim -
2021 : Methods »
Lilian Weng -
2021 Tutorial: Self-Supervised Learning: Self-Prediction and Contrastive Learning »
Lilian Weng · Jong Wook Kim -
2021 : Intro to self-supervised learning »
Lilian Weng -
2020 : Contributed Talk: Asymmetric self-play for automatic goal discovery in robotic manipulation »
OpenAI Robotics · Matthias Plappert · Raul Sampedro · Tao Xu · Ilge Akkaya · Vineet Kosaraju · Peter Welinder · Ruben D'Sa · Arthur Petron · Henrique Ponde · Alex Paino · Hyeonwoo Noh Noh · Lilian Weng · Qiming Yuan · Casey Chu · Wojciech Zaremba -
2019 : Poster and Coffee Break 1 »
Aaron Sidford · Aditya Mahajan · Alejandro Ribeiro · Alex Lewandowski · Ali H Sayed · Ambuj Tewari · Angelika Steger · Anima Anandkumar · Asier Mujika · Hilbert J Kappen · Bolei Zhou · Byron Boots · Chelsea Finn · Chen-Yu Wei · Chi Jin · Ching-An Cheng · Christina Yu · Clement Gehring · Craig Boutilier · Dahua Lin · Daniel McNamee · Daniel Russo · David Brandfonbrener · Denny Zhou · Devesh Jha · Diego Romeres · Doina Precup · Dominik Thalmeier · Eduard Gorbunov · Elad Hazan · Elena Smirnova · Elvis Dohmatob · Emma Brunskill · Enrique Munoz de Cote · Ethan Waldie · Florian Meier · Florian Schaefer · Ge Liu · Gergely Neu · Haim Kaplan · Hao Sun · Hengshuai Yao · Jalaj Bhandari · James A Preiss · Jayakumar Subramanian · Jiajin Li · Jieping Ye · Jimmy Smith · Joan Bas Serrano · Joan Bruna · John Langford · Jonathan Lee · Jose A. Arjona-Medina · Kaiqing Zhang · Karan Singh · Yuping Luo · Zafarali Ahmed · Zaiwei Chen · Zhaoran Wang · Zhizhong Li · Zhuoran Yang · Ziping Xu · Ziyang Tang · Yi Mao · David Brandfonbrener · Shirli Di-Castro · Riashat Islam · Zuyue Fu · Abhishek Naik · Saurabh Kumar · Benjamin Petit · Angeliki Kamoutsi · Simone Totaro · Arvind Raghunathan · Rui Wu · Donghwan Lee · Dongsheng Ding · Alec Koppel · Hao Sun · Christian Tjandraatmadja · Mahdi Karami · Jincheng Mei · Chenjun Xiao · Junfeng Wen · Zichen Zhang · Ross Goroshin · Mohammad Pezeshki · Jiaqi Zhai · Philip Amortila · Shuo Huang · Mariya Vasileva · El houcine Bergou · Adel Ahmadyan · Haoran Sun · Sheng Zhang · Lukas Gruber · Yuanhao Wang · Tetiana Parshakova -
2019 Poster: Reconciling λ-Returns with Experience Replay »
Brett Daley · Christopher Amato -
2018 Workshop: Reinforcement Learning under Partial Observability »
Joni Pajarinen · Chris Amato · Pascal Poupart · David Hsu -
2018 Poster: Forward Modeling for Partial Observation Strategy Games - A StarCraft Defogger »
Gabriel Synnaeve · Zeming Lin · Jonas Gehring · Dan Gant · Vegard Mella · Vasil Khalidov · Nicolas Carion · Nicolas Usunier -
2017 : Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang -
2017 : Spotlights & Poster Session »
David Abel · Nicholas Denis · Maria Eckstein · Ronan Fruit · Karan Goel · Joshua Gruenstein · Anna Harutyunyan · Martin Klissarov · Xiangyu Kong · Aviral Kumar · Saurabh Kumar · Miao Liu · Daniel McNamee · Shayegan Omidshafiei · Silviu Pitis · Paulo Rauber · Melrose Roderick · Tianmin Shu · Yizhou Wang · Shangtong Zhang