`

Timezone: »

 
Smooth Games in Machine Learning Beyond GANs
Niao He

Fri Dec 07 08:00 AM -- 08:40 AM (PST) @ None

This talk will discuss a wide spectrum of recent advances in machine learning using smooth games, beyond the phenomenal GANs. Such showcases include reinforcement learning, robust and adversarial machine learning, approximate Bayesian computation, maximum likelihood estimation in exponential family, and etc. We show that all of these classical machine learning tasks can be reduced to solving (non) convex-concave min-max optimization problems. Hence, it is of paramount importance to developing a good theoretical understanding and principled algorithms for min-max optimization. We will review some of the theory and algorithms for smooth games and variational inequalities in the convex regime and shed some light on their counterparts in the non-convex regime.

Author Information

Niao He (UIUC)

More from the Same Authors

  • 2019 : Closing Remarks »
    Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White
  • 2019 : Poster and Coffee Break 2 »
    Karol Hausman · Kefan Dong · Ken Goldberg · Lihong Li · Lin Yang · Lingxiao Wang · Lior Shani · Liwei Wang · Loren Amdahl-Culleton · Lucas Cassano · Marc Dymetman · Marc Bellemare · Marcin Tomczak · Margarita Castro · Marius Kloft · Marius-Constantin Dinu · Markus Holzleitner · Martha White · Mengdi Wang · Michael Jordan · Mihailo Jovanovic · Ming Yu · Minshuo Chen · Moonkyung Ryu · Muhammad Zaheer · Naman Agarwal · Nan Jiang · Niao He · Nikolaus Yasui · Nikos Karampatziakis · Nino Vieillard · Ofir Nachum · Olivier Pietquin · Ozan Sener · Pan Xu · Parameswaran Kamalaruban · Paul Mineiro · Paul Rolland · Philip Amortila · Pierre-Luc Bacon · Prakash Panangaden · Qi Cai · Qiang Liu · Quanquan Gu · Raihan Seraj · Richard Sutton · Rick Valenzano · Robert Dadashi · Rodrigo Toro Icarte · Roshan Shariff · Roy Fox · Ruosong Wang · Saeed Ghadimi · Samuel Sokota · Sean Sinclair · Sepp Hochreiter · Sergey Levine · Sergio Valcarcel Macua · Sham Kakade · Shangtong Zhang · Sheila McIlraith · Shie Mannor · Shimon Whiteson · Shuai Li · Shuang Qiu · Wai Lok Li · Siddhartha Banerjee · Sitao Luan · Tamer Basar · Thinh Doan · Tianhe Yu · Tianyi Liu · Tom Zahavy · Toryn Klassen · Tuo Zhao · Vicenç Gómez · Vincent Liu · Volkan Cevher · Wesley Suttle · Xiao-Wen Chang · Xiaohan Wei · Xiaotong Liu · Xingguo Li · Xinyi Chen · Xingyou Song · Yao Liu · YiDing Jiang · Yihao Feng · Yilun Du · Yinlam Chow · Yinyu Ye · Yishay Mansour · · Yonathan Efroni · Yongxin Chen · Yuanhao Wang · Bo Dai · Chen-Yu Wei · Harsh Shrivastava · Hongyang Zhang · Qinqing Zheng · SIDDHARTHA SATPATHI · Xueqing Liu · Andreu Vall
  • 2019 : Poster Spotlight 1 »
    David Brandfonbrener · Joan Bruna · Tom Zahavy · Haim Kaplan · Yishay Mansour · Nikos Karampatziakis · John Langford · Paul Mineiro · Donghwan Lee · Niao He
  • 2019 Workshop: Bridging Game Theory and Deep Learning »
    Ioannis Mitliagkas · Gauthier Gidel · Niao He · Reyhane Askari Hemmat · N H · Nika Haghtalab · Simon Lacoste-Julien
  • 2019 Workshop: The Optimization Foundations of Reinforcement Learning »
    Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White
  • 2019 : Opening Remarks »
    Bo Dai · Niao He · Nicolas Le Roux · Lihong Li · Dale Schuurmans · Martha White
  • 2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
    Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans
  • 2019 Poster: Learning Positive Functions with Pseudo Mirror Descent »
    Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He
  • 2019 Spotlight: Learning Positive Functions with Pseudo Mirror Descent »
    Yingxiang Yang · Haoxiang Wang · Negar Kiyavash · Niao He
  • 2018 Poster: Coupled Variational Bayes via Optimization Embedding »
    Bo Dai · Hanjun Dai · Niao He · Weiyang Liu · Zhen Liu · Jianshu Chen · Lin Xiao · Le Song
  • 2018 Poster: Predictive Approximate Bayesian Computation via Saddle Points »
    Yingxiang Yang · Bo Dai · Negar Kiyavash · Niao He
  • 2018 Poster: Quadratic Decomposable Submodular Function Minimization »
    Pan Li · Niao He · Olgica Milenkovic
  • 2017 Poster: Online Learning for Multivariate Hawkes Processes »
    Yingxiang Yang · Jalal Etesami · Niao He · Negar Kiyavash
  • 2016 Workshop: OPT 2016: Optimization for Machine Learning »
    Suvrit Sra · Francis Bach · Sashank J. Reddi · Niao He