Timezone: »
The PatentAI technology uses custom natural language processing and machine learning to detect Intellectual Property (IP) infringement. Our experiments and demonstrations shows a significant improvement in the performance of the system by using a custom natural language pre-processing step that converts the patent (legal) language into simple English (which is a desirable function by itself), simplifies the text to capture its essence, and transforms it into a concise graph representation. After this critical pre-processing step, we use a learning model trained on a Paraphrase Identification dataset to detect if two given patent excerpts paraphrase each other, and therefore, the corresponding patents infringe on each other. A key novelty of our approach lies in the techniques used in the pre-processing step to increase the performance of the learning model. In addition, we address the difficult problem of IP infringement detection by converting it to a paraphrase identification problem, and leveraging existing models and datasets. In our demonstration, the user can enter two excerpts from different patents to detect if one patent infringe on the other. The system processes the two texts and interactively shows the user the following: (a) results of converting the patent excerpts from a patent/legal language to simple English, (b) a graph representation of each text to capture the essence of the ideas conveyed in the text (c) key extracted features, and (d) the IP infringement prediction (Match or Mismatch), where the “Match” prediction means that the model predicts that one of the patents infringe on the other.
Author Information
Youssef Drissi (IBM Research AI)
Karthikeyan Natesan Ramamurthy (IBM Research)
Prasanna Sattigeri (IBM Research)
More from the Same Authors
-
2022 : Physics-Constrained Deep Learning for Climate Downscaling »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 : Generating physically-consistent high-resolution climate data with hard-constrained neural networks »
Paula Harder · Qidong Yang · Venkatesh Ramesh · Prasanna Sattigeri · Alex Hernandez-Garcia · Campbell Watson · Daniela Szwarcman · David Rolnick -
2022 Poster: Is this the Right Neighborhood? Accurate and Query Efficient Model Agnostic Explanations »
Amit Dhurandhar · Karthikeyan Natesan Ramamurthy · Karthikeyan Shanmugam -
2022 Poster: Fair Infinitesimal Jackknife: Mitigating the Influence of Biased Training Data Points Without Refitting »
Prasanna Sattigeri · Soumya Ghosh · Inkit Padhi · Pierre Dognin · Kush Varshney -
2022 Expo Talk Panel: Uncertainty quantification for fair and transparent AI-assisted decision-making »
Prasanna Sattigeri -
2021 Poster: Scalable Intervention Target Estimation in Linear Models »
Burak Varici · Karthikeyan Shanmugam · Prasanna Sattigeri · Ali Tajer -
2020 : Closing Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 : Spotlight: Characterizing the Latent Space of Molecular Generative Models with Persistent Homology Metrics »
Yair Schiff · Payel Das · Vijil Chenthamarakshan · Karthikeyan Natesan Ramamurthy -
2020 Workshop: Topological Data Analysis and Beyond »
Bastian Rieck · Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Yuhei Umeda · Guy Wolf -
2020 : Opening Remarks »
Frederic Chazal · Smita Krishnaswamy · Roland Kwitt · Karthikeyan Natesan Ramamurthy · Bastian Rieck · Yuhei Umeda · Guy Wolf -
2020 Poster: Finding the Homology of Decision Boundaries with Active Learning »
Weizhi Li · Gautam Dasarathy · Karthikeyan Natesan Ramamurthy · Visar Berisha -
2020 Poster: Model Agnostic Multilevel Explanations »
Karthikeyan Natesan Ramamurthy · Bhanukiran Vinzamuri · Yunfeng Zhang · Amit Dhurandhar -
2020 Poster: Optimizing Mode Connectivity via Neuron Alignment »
Norman J Tatro · Pin-Yu Chen · Payel Das · Igor Melnyk · Prasanna Sattigeri · Rongjie Lai -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 Poster: Learning New Tricks From Old Dogs: Multi-Source Transfer Learning From Pre-Trained Networks »
Joshua Lee · Prasanna Sattigeri · Gregory Wornell -
2018 Poster: Co-regularized Alignment for Unsupervised Domain Adaptation »
Abhishek Kumar · Prasanna Sattigeri · Kahini Wadhawan · Leonid Karlinsky · Rogerio Feris · Bill Freeman · Gregory Wornell -
2017 Poster: Optimized Pre-Processing for Discrimination Prevention »
Flavio Calmon · Dennis Wei · Bhanukiran Vinzamuri · Karthikeyan Natesan Ramamurthy · Kush Varshney -
2017 Poster: Semi-supervised Learning with GANs: Manifold Invariance with Improved Inference »
Abhishek Kumar · Prasanna Sattigeri · Tom Fletcher