`

Timezone: »

 
Demonstration
Reproducing Machine Learning Research on Binder
Jessica Forde · Tim Head · Chris Holdgraf · M Pacer · Félix-Antoine Fortin · Fernando Perez

Tue Dec 04 07:45 AM -- 04:30 PM (PST) @ Room 510

Full author list is:

Jessica Zosa Forde Matthias Bussonnier Félix-Antoine Fortin Brian Granger Tim Head Chris Holdgraf Paul Ivanov Kyle Kelley Fernando Perez M Pacer Yuvi Panda Gladys Nalvarte Min Ragan-Kelley Zach Sailer Steven Silvester Erik Sundell Carol Willing

Researchers have encouraged the machine learning community to produce reproducible, complete pipelines for code. Binder is an open-source service that lets users share interactive, reproducible science. It uses standard configuration files in software engineering to create interactive versions of research that exist on sites like GitHub with minimal additional effort. By leveraging tools such as Kubernetes, it manages the technical complexity around creating containers to capture a repository and its dependencies, generating user sessions, and providing public URLs to share the built images with others. It combines two open-source projects within the Jupyter ecosystem: repo2docker and JupyterHub. repo2docker builds the Docker image of the git repository specified by the user, installs dependencies, and provides various front-ends to explore the image. JupyterHub then spawns and serves instances of these built images using Kubernetes to scale as needed. Our free public deployment, mybinder.org, features over 3,000 repos on topics such LIGO’s gravational waves, textbooks on Kalman Filters, and open-source libraries such as PyMC3. As of September 2018, it serves an average of 8,000 users per day and has served as many as 22,000 a given day. Our demonstration shares a Binder deployment that features machine learning research papers from GitHub.

Author Information

Jessica Forde (Project Jupyter)
Tim Head (Wild Tree Tech)
Chris Holdgraf (UC Berkeley)
M Pacer (Netflix)
Félix-Antoine Fortin (Calcul Québec - Université Laval)
Fernando Perez (University of California Berkeley)

More from the Same Authors

  • 2021 Workshop: I (Still) Can't Believe It's Not Better: A workshop for “beautiful” ideas that "should" have worked »
    Aaron Schein · Melanie F. Pradier · Jessica Forde · Stephanie Hyland · Francisco Ruiz
  • 2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
    Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach
  • 2020 : Jessica Zosa Forde - Build, Start, Run, Push: Computational Registration of ML Experiments »
    Jessica Forde
  • 2019 : Lunch Break and Posters »
    Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Sat Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu (Rofu) Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Martin Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Dan Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Sam Schoenholz · David Schwab · Dennis Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu
  • 2019 Workshop: Retrospectives: A Venue for Self-Reflection in ML Research »
    Ryan Lowe · Yoshua Bengio · Joelle Pineau · Michela Paganini · Jessica Forde · Shagun Sodhani · Abhishek Gupta · Joel Lehman · Peter Henderson · Kanika Madan · Koustuv Sinha · Xavier Bouthillier
  • 2018 : Poster Session 1 (note there are numerous missing names here, all papers appear in all poster sessions) »
    Akhilesh Gotmare · Kenneth Holstein · Jan Brabec · Michal Uricar · Kaleigh Clary · Cynthia Rudin · Sam Witty · Andrew Ross · Shayne O'Brien · Babak Esmaeili · Jessica Forde · Massimo Caccia · Ali Emami · Scott Jordan · Bronwyn Woods · D. Sculley · Rebekah Overdorf · Nicolas Le Roux · Peter Henderson · Brandon Yang · Joyce Liu · David Jensen · Nic Dalmasso · Weitang Liu · Paul TRICHELAIR · Jun Lee · Akanksha Atrey · Matt Groh · Yotam Hechtlinger · Emma Tosch
  • 2013 Demonstration: Di-BOSS™: Digital Building Operating System Solution »
    Jessica Forde · Vivek Rathod · Hooshmand Shookri · Vaibhav Bandari · Ashwath Rajan · John Min · Ariel Fan · Leon Wu · Ashish Gagneja · Doug Riecken · David Solomon · Lauren Hannah · Albert Boulanger · Roger Anderson
  • 2011 Poster: A rational model of causal inference with continuous causes »
    M Pacer · Tom Griffiths