Timezone: »
Author Information
Akhilesh Gotmare (EPFL)
I am a Machine Learning Researcher with Salesforce Research Asia in Singapore. I finished my MSc at the Department of Computer Science at EPFL, Switzerland, where I was working with Prof. Martin Jaggi's Machine Learning and Optimization laboratory for my thesis project. During my Master's, I was an intern with Salesforce Research in Palo Alto (Apr - Sept 2018).
Kenneth Holstein (Carnegie Mellon University)
Jan Brabec (Cisco)
Michal Uricar (Valeo R&D Prague)
Kaleigh Clary (University of Massachusetts Amherst)
Cynthia Rudin (Duke)
Sam Witty (University of Massachusetts Amherst)
Andrew Ross (Harvard University)
Shayne O'Brien (MIT)
Babak Esmaeili (Northeastern University)
Jessica Forde (Project Jupyter)
Massimo Caccia (MILA)
Ali Emami (McGill University)
Scott Jordan (University of Massachusetts Amherst)
Bronwyn Woods (Duo Security)
D. Sculley (Google Research)
Rebekah Overdorf (EPFL)
Nicolas Le Roux (Google Brain)
Peter Henderson (McGill University)
Brandon Yang (Google Brain)
Tzu-Yu Liu (Freenome)
David Jensen (Univ. of Massachusetts)
David Jensen is a Professor of Computer Science at the University of Massachusetts Amherst. He directs the Knowledge Discovery Laboratory and currently serves as the Director of the Computational Social Science Institute, an interdisciplinary effort at UMass to study social phenomena using computational tools and concepts. From 1991 to 1995, he served as an analyst with the Office of Technology Assessment, an agency of the United States Congress. His current research focuses on methods for constructing accurate causal models from observational and experimental data. He regularly serves on program committees for several conferences, including the Conference on Neural Information Processing Systems, the International Conference on Machine Learning, and the Conference on Uncertainty in Artificial Intelligence. He has served on the Board of Directors of the ACM Special Interest Group on Knowledge Discovery and Data Mining (2005-2013), the Defense Science Study Group (2006-2007), and DARPA's Information Science and Technology Group (2007-2012). In 2011, he received the Outstanding Teacher Award from the UMass College of Natural Sciences.
Niccolo Dalmasso (Carnegie Mellon University)
Weitang Liu (University of California, Davis)
Paul Marc TRICHELAIR (McGill Univeristy/MILA)
Jun Ki Lee (Brown University)
Akanksha Atrey (University of Massachusetts Amherst)
Matt Groh (MIT)
Yotam Hechtlinger (Carnegie Mellon University)
Emma Tosch (University of Massachusetts Amherst)
More from the Same Authors
-
2020 : HECT: High-Dimensional Ensemble Consistency Testing for Climate Models »
Niccolo Dalmasso -
2021 Spotlight: Align before Fuse: Vision and Language Representation Learning with Momentum Distillation »
Junnan Li · Ramprasaath Selvaraju · Akhilesh Gotmare · Shafiq Joty · Caiming Xiong · Steven Chu Hong Hoi -
2021 : Uncertainty Baselines: Benchmarks for Uncertainty & Robustness in Deep Learning »
Zachary Nado · Neil Band · Mark Collier · Josip Djolonga · Mike Dusenberry · Sebastian Farquhar · Qixuan Feng · Angelos Filos · Marton Havasi · Rodolphe Jenatton · Ghassen Jerfel · Jeremiah Liu · Zelda Mariet · Jeremy Nixon · Shreyas Padhy · Jie Ren · Tim G. J. Rudner · Yeming Wen · Florian Wenzel · Kevin Murphy · D. Sculley · Balaji Lakshminarayanan · Jasper Snoek · Yarin Gal · Dustin Tran -
2022 : Poly-S: Analyzing and Improving Polytropon for Data-Efficient Multi-Task Learning »
Lucas Page-Caccia · Edoardo Maria Ponti · Liyuan Liu · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2022 : Target-based Surrogates for Stochastic Optimization »
Jonathan Lavington · Sharan Vaswani · Reza Babanezhad Harikandeh · Mark Schmidt · Nicolas Le Roux -
2022 : Making the World More Equal, One Ride at a Time: Studying Public Transportation Initiatives Using Interpretable Causal Inference »
Gaurav Rajesh Parikh · Albert Sun · Jenny Huang · Lesia Semenova · Cynthia Rudin -
2022 : Improving the Efficiency of the PC Algorithm by Using Model-Based Conditional Independence Tests »
Erica Cai · Andrew McGregor · David Jensen -
2022 : Counterfactual Decision Support Under Treatment-Conditional Outcome Measurement Error »
Luke Guerdan · Amanda Coston · Kenneth Holstein · Steven Wu -
2022 : Identifying the Context Shift between Test Benchmarks and Production Data »
Matt Groh -
2022 : Identifying the Context Shift between Test Benchmarks and Production Data »
Matt Groh -
2023 Poster: Multi-Head Adapter Routing for Cross-Task Generalization »
Lucas Page-Caccia · Edoardo Maria Ponti · Zhan Su · Matheus Pereira · Nicolas Le Roux · Alessandro Sordoni -
2023 Poster: Deep language networks: joint prompt training of stacked LLMs using variational inference »
Alessandro Sordoni · Eric Yuan · Marc-Alexandre Côté · Matheus Pereira · Adam Trischler · Ziang Xiao · Arian Hosseini · Friederike Niedtner · Nicolas Le Roux -
2023 Poster: This Looks Like Those: Illuminating Prototypical Concepts Using Multiple Visualizations »
Chiyu Ma · Brandon Zhao · Chaofan Chen · Cynthia Rudin -
2023 Poster: A Path to Simpler Models Starts With Noise »
Lesia Semenova · Harry Chen · Ronald Parr · Cynthia Rudin -
2023 Poster: The Rashomon Importance Distribution: Getting RID of Unstable, Single Model-based Variable Importance »
Jon Donnelly · Srikar Katta · Cynthia Rudin · Edward Browne -
2023 Poster: Behavior Alignment via Reward Function Optimization »
Dhawal Gupta · Yash Chandak · Scott Jordan · Philip Thomas · Bruno da Silva -
2023 Poster: Exploring and Interacting with the Set of Good Sparse Generalized Additive Models »
Zhi Chen · Chudi Zhong · Margo Seltzer · Cynthia Rudin -
2023 Poster: OKRidge: Scalable Optimal k-Sparse Ridge Regression for Learning Dynamical Systems »
Jiachang Liu · Sam Rosen · Chudi Zhong · Cynthia Rudin -
2023 Poster: Decision-Aware Actor-Critic with Function Approximation and Theoretical Guarantees »
Sharan Vaswani · Amirreza Kazemi · Reza Babanezhad Harikandeh · Nicolas Le Roux -
2023 Poster: DataPerf: Benchmarks for Data-Centric AI Development »
Mark Mazumder · Colby Banbury · Xiaozhe Yao · Bojan Karlaš · William Gaviria Rojas · Sudnya Diamos · Greg Diamos · Lynn He · Alicia Parrish · Hannah Rose Kirk · Jessica Quaye · Charvi Rastogi · Douwe Kiela · David Jurado · David Kanter · Rafael Mosquera · Will Cukierski · Juan Ciro · Lora Aroyo · Bilge Acun · Lingjiao Chen · Mehul Raje · Max Bartolo · Evan Sabri Eyuboglu · Amirata Ghorbani · Emmett Goodman · Addison Howard · Oana Inel · Tariq Kane · Christine R. Kirkpatrick · D. Sculley · Tzu-Sheng Kuo · Jonas Mueller · Tristan Thrush · Joaquin Vanschoren · Margaret Warren · Adina Williams · Serena Yeung · Newsha Ardalani · Praveen Paritosh · Ce Zhang · James Zou · Carole-Jean Wu · Cody Coleman · Andrew Ng · Peter Mattson · Vijay Janapa Reddi -
2022 Panel: Panel 3A-2: Linear tree shap… & Exploring the Whole… »
peng yu · Cynthia Rudin -
2022 Spotlight: Evaluation beyond Task Performance: Analyzing Concepts in AlphaZero in Hex »
Charles Lovering · Jessica Forde · George Konidaris · Ellie Pavlick · Michael Littman -
2022 : Panel Discussion »
Cynthia Rudin · Dan Bohus · Brenna Argall · Alison Gopnik · Igor Mordatch · Samuel Kaski -
2022 : Let’s Give Domain Experts a Choice by Creating Many Approximately-Optimal Machine Learning Models »
Cynthia Rudin -
2022 : Improving dermatology classifiers across populations using images generated by large diffusion models »
Luke Sagers · James Diao · Matt Groh · Pranav Rajpurkar · Adewole Adamson · Arjun Manrai -
2022 Poster: Exploring the Whole Rashomon Set of Sparse Decision Trees »
Rui Xin · Chudi Zhong · Zhi Chen · Takuya Takagi · Margo Seltzer · Cynthia Rudin -
2022 Poster: Rethinking Nonlinear Instrumental Variable Models through Prediction Validity »
Chunxiao Li · Cynthia Rudin · Tyler H. McCormick -
2022 Poster: FasterRisk: Fast and Accurate Interpretable Risk Scores »
Jiachang Liu · Chudi Zhong · Boxuan Li · Margo Seltzer · Cynthia Rudin -
2022 Poster: Evaluation beyond Task Performance: Analyzing Concepts in AlphaZero in Hex »
Charles Lovering · Jessica Forde · George Konidaris · Ellie Pavlick · Michael Littman -
2021 : Technical Debt in ML: A Data-Centric View »
D. Sculley -
2021 : TD | Panel Discussion »
Thomas Gilbert · Ayse Yasar · Rachel Thomas · Mason Kortz · Frank Pasquale · Jessica Forde -
2021 : Context in Automated Affect Recognition »
Matt Groh · Rosalind Picard -
2021 Workshop: I (Still) Can't Believe It's Not Better: A workshop for “beautiful” ideas that "should" have worked »
Aaron Schein · Melanie F. Pradier · Jessica Forde · Stephanie Hyland · Francisco Ruiz -
2021 Poster: Hyperparameter Optimization Is Deceiving Us, and How to Stop It »
A. Feder Cooper · Yucheng Lu · Jessica Forde · Christopher De Sa -
2021 Poster: Continual Learning via Local Module Composition »
Oleksiy Ostapenko · Pau Rodriguez · Massimo Caccia · Laurent Charlin -
2021 : AME: Interpretable Almost Exact Matching for Causal Inference »
Haoning Jiang · Thomas Howell · Neha Gupta · Vittorio Orlandi · Sudeepa Roy · Marco Morucci · Harsh Parikh · Alexander Volfovsky · Cynthia Rudin -
2021 Poster: Align before Fuse: Vision and Language Representation Learning with Momentum Distillation »
Junnan Li · Ramprasaath Selvaraju · Akhilesh Gotmare · Shafiq Joty · Caiming Xiong · Steven Chu Hong Hoi -
2021 Poster: Learning where to learn: Gradient sparsity in meta and continual learning »
Johannes von Oswald · Dominic Zhao · Seijin Kobayashi · Simon Schug · Massimo Caccia · Nicolas Zucchet · João Sacramento -
2020 : Contributed Talk - Cryo-ZSSR: multiple-image super-resolution based on deep internal learning »
Qinwen Huang · Reed Chen · Cynthia Rudin -
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 : How should researchers engage with controversial applications of AI? »
Logan Koepke · CATHERINE ONEIL · Tawana Petty · Cynthia Rudin · Deborah Raji · Shawn Bushway -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 : Jessica Zosa Forde - Build, Start, Run, Push: Computational Registration of ML Experiments »
Jessica Forde -
2020 Workshop: ML Retrospectives, Surveys & Meta-Analyses (ML-RSA) »
Chhavi Yadav · Prabhu Pradhan · Jesse Dodge · Mayoore Jaiswal · Peter Henderson · Abhishek Gupta · Ryan Lowe · Jessica Forde · Joelle Pineau -
2020 Workshop: Fair AI in Finance »
Senthil Kumar · Cynthia Rudin · John Paisley · Isabelle Moulinier · C. Bayan Bruss · Eren K. · Susan Tibbs · Oluwatobi Olabiyi · Simona Gandrabur · Svitlana Vyetrenko · Kevin Compher -
2020 Tutorial: (Track3) Policy Optimization in Reinforcement Learning Q&A »
Sham M Kakade · Martha White · Nicolas Le Roux -
2020 Poster: Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning »
Massimo Caccia · Pau Rodriguez · Oleksiy Ostapenko · Fabrice Normandin · Min Lin · Lucas Page-Caccia · Issam Hadj Laradji · Irina Rish · Alexandre Lacoste · David Vázquez · Laurent Charlin -
2020 Poster: Synbols: Probing Learning Algorithms with Synthetic Datasets »
Alexandre Lacoste · Pau Rodríguez López · Frederic Branchaud-Charron · Parmida Atighehchian · Massimo Caccia · Issam Hadj Laradji · Alexandre Drouin · Matthew Craddock · Laurent Charlin · David Vázquez -
2020 Poster: An operator view of policy gradient methods »
Dibya Ghosh · Marlos C. Machado · Nicolas Le Roux -
2020 : Prof. David Jensen (University of Massachusetts Amherst) - "Empirical Research in Machine Learning: Perspectives and Strategies" »
David Jensen -
2019 : Lunch Break and Posters »
Xingyou Song · Elad Hoffer · Wei-Cheng Chang · Jeremy Cohen · Jyoti Islam · Yaniv Blumenfeld · Andreas Madsen · Jonathan Frankle · Sebastian Goldt · Satrajit Chatterjee · Abhishek Panigrahi · Alex Renda · Brian Bartoldson · Israel Birhane · Aristide Baratin · Niladri Chatterji · Roman Novak · Jessica Forde · YiDing Jiang · Yilun Du · Linara Adilova · Michael Kamp · Berry Weinstein · Itay Hubara · Tal Ben-Nun · Torsten Hoefler · Daniel Soudry · Hsiang-Fu Yu · Kai Zhong · Yiming Yang · Inderjit Dhillon · Jaime Carbonell · Yanqing Zhang · Dar Gilboa · Johannes Brandstetter · Alexander R Johansen · Gintare Karolina Dziugaite · Raghav Somani · Ari Morcos · Freddie Kalaitzis · Hanie Sedghi · Lechao Xiao · John Zech · Muqiao Yang · Simran Kaur · Qianli Ma · Yao-Hung Hubert Tsai · Ruslan Salakhutdinov · Sho Yaida · Zachary Lipton · Daniel Roy · Michael Carbin · Florent Krzakala · Lenka Zdeborová · Guy Gur-Ari · Ethan Dyer · Dilip Krishnan · Hossein Mobahi · Samy Bengio · Behnam Neyshabur · Praneeth Netrapalli · Kris Sankaran · Julien Cornebise · Yoshua Bengio · Vincent Michalski · Samira Ebrahimi Kahou · Md Rifat Arefin · Jiri Hron · Jaehoon Lee · Jascha Sohl-Dickstein · Samuel Schoenholz · David Schwab · Dongyu Li · Sang Choe · Henning Petzka · Ashish Verma · Zhichao Lin · Cristian Sminchisescu -
2019 : Lunch + Poster Session »
Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans -
2019 : Coffee Break and Poster Session »
Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus -
2019 : Spotlight Talks 1 »
Chaofeng Wang · Niccolo Dalmasso · Jigar Doshi · Junghoon Seo · Mubbasir Kapadia · Anna Kruspe -
2019 : Poster session »
Sebastian Farquhar · Erik Daxberger · Andreas Look · Matt Benatan · Ruiyi Zhang · Marton Havasi · Fredrik Gustafsson · James A Brofos · Nabeel Seedat · Micha Livne · Ivan Ustyuzhaninov · Adam Cobb · Felix D McGregor · Patrick McClure · Tim R. Davidson · Gaurush Hiranandani · Sanjeev Arora · Masha Itkina · Didrik Nielsen · William Harvey · Matias Valdenegro-Toro · Stefano Peluchetti · Riccardo Moriconi · Tianyu Cui · Vaclav Smidl · Taylan Cemgil · Jack Fitzsimons · He Zhao · · mariana vargas vieyra · Apratim Bhattacharyya · Rahul Sharma · Geoffroy Dubourg-Felonneau · Jonathan Warrell · Slava Voloshynovskiy · Mihaela Rosca · Jiaming Song · Andrew Ross · Homa Fashandi · Ruiqi Gao · Hooshmand Shokri Razaghi · Joshua Chang · Zhenzhong Xiao · Vanessa Boehm · Giorgio Giannone · Ranganath Krishnan · Joe Davison · Arsenii Ashukha · Jeremiah Liu · Sicong (Sheldon) Huang · Evgenii Nikishin · Sunho Park · Nilesh Ahuja · Mahesh Subedar · · Artyom Gadetsky · Jhosimar Arias Figueroa · Tim G. J. Rudner · Waseem Aslam · Adrián Csiszárik · John Moberg · Ali Hebbal · Kathrin Grosse · Pekka Marttinen · Bang An · Hlynur Jónsson · Samuel Kessler · Abhishek Kumar · Mikhail Figurnov · Omesh Tickoo · Steindor Saemundsson · Ari Heljakka · Dániel Varga · Niklas Heim · Simone Rossi · Max Laves · Waseem Gharbieh · Nicholas Roberts · Luis Armando Pérez Rey · Matthew Willetts · Prithvijit Chakrabarty · Sumedh Ghaisas · Carl Shneider · Wray Buntine · Kamil Adamczewski · Xavier Gitiaux · Suwen Lin · Hao Fu · Gunnar Rätsch · Aidan Gomez · Erik Bodin · Dinh Phung · Lennart Svensson · Juliano Tusi Amaral Laganá Pinto · Milad Alizadeh · Jianzhun Du · Kevin Murphy · Beatrix Benkő · Shashaank Vattikuti · Jonathan Gordon · Christopher Kanan · Sontje Ihler · Darin Graham · Michael Teng · Louis Kirsch · Tomas Pevny · Taras Holotyak -
2019 Workshop: Retrospectives: A Venue for Self-Reflection in ML Research »
Ryan Lowe · Yoshua Bengio · Joelle Pineau · Michela Paganini · Jessica Forde · Shagun Sodhani · Abhishek Gupta · Joel Lehman · Peter Henderson · Kanika Madan · Koustuv Sinha · Xavier Bouthillier -
2019 Poster: Online Continual Learning with Maximal Interfered Retrieval »
Rahaf Aljundi · Eugene Belilovsky · Tinne Tuytelaars · Laurent Charlin · Massimo Caccia · Min Lin · Lucas Page-Caccia -
2019 Poster: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su -
2019 Spotlight: This Looks Like That: Deep Learning for Interpretable Image Recognition »
Chaofan Chen · Oscar Li · Daniel Tao · Alina Barnett · Cynthia Rudin · Jonathan K Su -
2019 Poster: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Spotlight: Optimal Sparse Decision Trees »
Xiyang Hu · Cynthia Rudin · Margo Seltzer -
2019 Poster: A Geometric Perspective on Optimal Representations for Reinforcement Learning »
Marc Bellemare · Will Dabney · Robert Dadashi · Adrien Ali Taiga · Pablo Samuel Castro · Nicolas Le Roux · Dale Schuurmans · Tor Lattimore · Clare Lyle -
2019 Poster: Can you trust your model's uncertainty? Evaluating predictive uncertainty under dataset shift »
Jasper Snoek · Yaniv Ovadia · Emily Fertig · Balaji Lakshminarayanan · Sebastian Nowozin · D. Sculley · Joshua Dillon · Jie Ren · Zachary Nado -
2019 Poster: The Case for Evaluating Causal Models Using Interventional Measures and Empirical Data »
Amanda Gentzel · Dan Garant · David Jensen -
2019 Poster: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2019 Spotlight: Reducing the variance in online optimization by transporting past gradients »
Sébastien Arnold · Pierre-Antoine Manzagol · Reza Babanezhad Harikandeh · Ioannis Mitliagkas · Nicolas Le Roux -
2018 : Invited Talk 6: Is it possible to have interpretable models for AI in Finance? »
Cynthia Rudin -
2018 : Posters (all accepted papers) + Break »
Jianyu Wang · Denis Gudovskiy · Ziheng Jiang · Michael Kaufmann · Andreea Anghel · James Bradbury · Nikolas Ioannou · Nitin Agrawal · Emma Tosch · Gyeongin Yu · Keno Fischer · Jarrett Revels · Giuseppe Siracusano · Yaoqing Yang · Jeff Johnson · Yang You · Hector Yuen · Chris Ying · Honglei Liu · Nikoli Dryden · Xiangxi Mo · Yangzihao Wang · Amit Juneja · Micah Smith · Qian Yu · pramod gupta · Deepak Narayanan · Keshav Santhanam · Tim Capes · Abdul Dakkak · Norman Mu · Ke Deng · Liam Li · Joao Carreira · Luis Remis · Deepti Raghavan · Una-May O'Reilly · Amanpreet Singh · Mahmoud (Mido) Assran · Eugene Wu · Eytan Bakshy · Jinliang Wei · Michael Innes · Viral Shah · Haibin Lin · Conrad Sanderson · Ryan Curtin · Marcus Edel -
2018 : On Avoiding Tragedy of the Commons in the Peer Review Process »
D. Sculley -
2018 : Using Cumulative Distribution Based Performance Analysis to Benchmark Models »
Scott Jordan -
2018 : Opportunities for machine learning research to support fairness in industry practice »
Kenneth Holstein -
2018 : Expanding search in the space of empirical ML »
Bronwyn Woods -
2018 : InclusiveImages: Competitor Presentations »
Yonatan Halpern · Pallavi Baljekar · D. Sculley · Pavel Ostyakov · Nawazuddin Mohammed · Weimin Wang · David Austin -
2018 Workshop: Workshop on Ethical, Social and Governance Issues in AI »
Chloe Bakalar · Sarah Bird · Tiberio Caetano · Edward W Felten · Dario Garcia · Isabel Kloumann · Finnian Lattimore · Sendhil Mullainathan · D. Sculley -
2018 Poster: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Spotlight: Human-in-the-Loop Interpretability Prior »
Isaac Lage · Andrew Ross · Samuel J Gershman · Been Kim · Finale Doshi-Velez -
2018 Demonstration: Reproducing Machine Learning Research on Binder »
Jessica Forde · Tim Head · Chris Holdgraf · M Pacer · Félix-Antoine Fortin · Fernando Perez -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2016 : TensorFlow Debugger: Debugging Dataflow Graphs for Machine Learning »
D. Sculley -
2016 : What's your ML Test Score? A rubric for ML production systems »
D. Sculley -
2015 Poster: Hidden Technical Debt in Machine Learning Systems »
D. Sculley · Gary Holt · Daniel Golovin · Eugene Davydov · Todd Phillips · Dietmar Ebner · Vinay Chaudhary · Michael Young · Jean-François Crespo · Dan Dennison -
2014 Session: Oral Session 2 »
D. Sculley -
2013 Demonstration: Di-BOSS™: Digital Building Operating System Solution »
Jessica Forde · Vivek Rathod · Hooshmand Shookri · Vaibhav Bandari · Ashwath Rajan · John Min · Ariel Fan · Leon Wu · Ashish Gagneja · Doug Riecken · David Solomon · Lauren Hannah · Albert Boulanger · Roger Anderson -
2012 Poster: A latent factor model for highly multi-relational data »
Rodolphe Jenatton · Nicolas Le Roux · Antoine Bordes · Guillaume R Obozinski -
2012 Poster: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2012 Oral: A Stochastic Gradient Method with an Exponential Convergence
Rate for Finite Training Sets »
Nicolas Le Roux · Mark Schmidt · Francis Bach -
2011 Workshop: Deep Learning and Unsupervised Feature Learning »
Yoshua Bengio · Adam Coates · Yann LeCun · Nicolas Le Roux · Andrew Y Ng -
2011 Poster: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2011 Oral: Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization »
Mark Schmidt · Nicolas Le Roux · Francis Bach -
2007 Poster: Learning the 2-D Topology of Images »
Nicolas Le Roux · Yoshua Bengio · Pascal Lamblin · Marc Joliveau · Balázs Kégl -
2007 Poster: Topmoumoute Online Natural Gradient Algorithm »
Nicolas Le Roux · Pierre-Antoine Manzagol · Yoshua Bengio