Timezone: »
Batch Normalization (BatchNorm) is a widely adopted technique that enables faster and more stable training of deep neural networks (DNNs). Despite its pervasiveness, the exact reasons for BatchNorm's effectiveness are still poorly understood. The popular belief is that this effectiveness stems from controlling the change of the layers' input distributions during training to reduce the so-called "internal covariate shift". In this work, we demonstrate that such distributional stability of layer inputs has little to do with the success of BatchNorm. Instead, we uncover a more fundamental impact of BatchNorm on the training process: it makes the optimization landscape significantly smoother. This smoothness induces a more predictive and stable behavior of the gradients, allowing for faster training.
Author Information
Shibani Santurkar (MIT)
Dimitris Tsipras (MIT)
Andrew Ilyas (MIT)
Aleksander Madry (MIT)
Aleksander Madry is the NBX Associate Professor of Computer Science in the MIT EECS Department and a principal investigator in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 2011 and, prior to joining the MIT faculty, he spent some time at Microsoft Research New England and on the faculty of EPFL. Aleksander's research interests span algorithms, continuous optimization, science of deep learning and understanding machine learning from a robustness perspective. His work has been recognized with a number of awards, including an NSF CAREER Award, an Alfred P. Sloan Research Fellowship, an ACM Doctoral Dissertation Award Honorable Mention, and 2018 Presburger Award.
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: How Does Batch Normalization Help Optimization? »
Tue Dec 4th through Wed the 5th Room Room 210
More from the Same Authors
-
2020 Poster: On Adaptive Attacks to Adversarial Example Defenses »
Florian Tramer · Nicholas Carlini · Wieland Brendel · Aleksander Madry -
2020 Poster: Do Adversarially Robust ImageNet Models Transfer Better? »
Hadi Salman · Andrew Ilyas · Logan Engstrom · Ashish Kapoor · Aleksander Madry -
2020 Oral: Do Adversarially Robust ImageNet Models Transfer Better? »
Hadi Salman · Andrew Ilyas · Logan Engstrom · Ashish Kapoor · Aleksander Madry -
2019 Workshop: Machine Learning with Guarantees »
Ben London · Gintare Karolina Dziugaite · Daniel Roy · Thorsten Joachims · Aleksander Madry · John Shawe-Taylor -
2019 Poster: Image Synthesis with a Single (Robust) Classifier »
Shibani Santurkar · Andrew Ilyas · Dimitris Tsipras · Logan Engstrom · Brandon Tran · Aleksander Madry -
2019 Poster: Adversarial Examples Are Not Bugs, They Are Features »
Andrew Ilyas · Shibani Santurkar · Dimitris Tsipras · Logan Engstrom · Brandon Tran · Aleksander Madry -
2019 Spotlight: Adversarial Examples Are Not Bugs, They Are Features »
Andrew Ilyas · Shibani Santurkar · Dimitris Tsipras · Logan Engstrom · Brandon Tran · Aleksander Madry -
2018 Poster: Spectral Signatures in Backdoor Attacks »
Brandon Tran · Jerry Li · Aleksander Madry -
2018 Poster: Adversarially Robust Generalization Requires More Data »
Ludwig Schmidt · Shibani Santurkar · Dimitris Tsipras · Kunal Talwar · Aleksander Madry -
2018 Spotlight: Adversarially Robust Generalization Requires More Data »
Ludwig Schmidt · Shibani Santurkar · Dimitris Tsipras · Kunal Talwar · Aleksander Madry -
2018 Tutorial: Adversarial Robustness: Theory and Practice »
J. Zico Kolter · Aleksander Madry