Timezone: »
We introduce a framework to transfer knowledge acquired from a repository of (heterogeneous) supervised datasets to new unsupervised datasets. Our perspective avoids the subjectivity inherent in unsupervised learning by reducing it to supervised learning, and provides a principled way to evaluate unsupervised algorithms. We demonstrate the versatility of our framework via rigorous agnostic bounds on a variety of unsupervised problems. In the context of clustering, our approach helps choose the number of clusters and the clustering algorithm, remove the outliers, and provably circumvent Kleinberg's impossibility result. Experiments across hundreds of problems demonstrate improvements in performance on unsupervised data with simple algorithms despite the fact our problems come from heterogeneous domains. Additionally, our framework lets us leverage deep networks to learn common features across many small datasets, and perform zero shot learning.
Author Information
Vikas Garg (MIT)
Adam Kalai (Microsoft Research New England (-(-_(-_-)_-)-))
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Supervising Unsupervised Learning »
Tue. Dec 4th through Wed the 5th Room Room 517 AB #164
More from the Same Authors
-
2021 : Programming Puzzles »
Tal Schuster · Ashwin Kalyan · Alex Polozov · Adam Kalai -
2021 Spotlight: Towards optimally abstaining from prediction with OOD test examples »
Adam Kalai · Varun Kanade -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2022 : Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 : Language Models Can Teach Themselves to Program Better »
Patrick Haluptzok · Matthew Bowers · Adam Kalai -
2022 Spotlight: Are GANs overkill for NLP? »
David Alvarez-Melis · Vikas Garg · Adam Kalai -
2022 : Panel »
Vikas Garg · Pan Li · Srijan Kumar · Emanuele Rossi · Shenyang Huang -
2022 : KeyNote 3 by Vikas Garg: Provably Powerful Temporal Graph Networks »
Vikas Garg -
2022 : A Theory of Unsupervised Translation for Understanding Animal Communication »
Shafi Goldwasser · David Gruber · Adam Kalai · Orr Paradise -
2022 Poster: Modular Flows: Differential Molecular Generation »
Yogesh Verma · Samuel Kaski · Markus Heinonen · Vikas Garg -
2022 Poster: Are GANs overkill for NLP? »
David Alvarez-Melis · Vikas Garg · Adam Kalai -
2022 Poster: Recurrent Convolutional Neural Networks Learn Succinct Learning Algorithms »
Surbhi Goel · Sham Kakade · Adam Kalai · Cyril Zhang -
2022 Poster: Symmetry-induced Disentanglement on Graphs »
Giangiacomo Mercatali · Andre Freitas · Vikas Garg -
2022 Poster: Provably expressive temporal graph networks »
Amauri Souza · Diego Mesquita · Samuel Kaski · Vikas Garg -
2021 : Programming Puzzles »
Tal Schuster · Ashwin Kalyan · Alex Polozov · Adam Kalai -
2021 Poster: Towards optimally abstaining from prediction with OOD test examples »
Adam Kalai · Varun Kanade -
2019 Poster: Solving graph compression via optimal transport »
Vikas Garg · Tommi Jaakkola -
2019 Poster: Generative Models for Graph-Based Protein Design »
John Ingraham · Vikas Garg · Regina Barzilay · Tommi Jaakkola -
2019 Poster: Online Markov Decoding: Lower Bounds and Near-Optimal Approximation Algorithms »
Vikas Garg · Tamar Pichkhadze -
2018 Poster: Learning SMaLL Predictors »
Vikas Garg · Ofer Dekel · Lin Xiao -
2016 Poster: Learning Tree Structured Potential Games »
Vikas Garg · Tommi Jaakkola -
2011 Poster: Efficient Learning of Generalized Linear and Single Index Models with Isotonic Regression »
Sham M Kakade · Adam Kalai · Varun Kanade · Ohad Shamir -
2009 Poster: Potential-Based Agnostic Boosting »
Adam Kalai · Varun Kanade