Timezone: »
Spotlight
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator
Cong Fang · Chris Junchi Li · Zhouchen Lin · Tong Zhang
In this paper, we propose a new technique named \textit{Stochastic Path-Integrated Differential EstimatoR} (SPIDER), which can be used to track many deterministic quantities of interests with significantly reduced computational cost.
Combining SPIDER with the method of normalized gradient descent, we propose SPIDER-SFO that solve non-convex stochastic optimization problems using stochastic gradients only.
We provide a few error-bound results on its convergence rates.
Specially, we prove that the SPIDER-SFO algorithm achieves a gradient computation cost of $\mathcal{O}\left( \min( n^{1/2} \epsilon^{-2}, \epsilon^{-3} ) \right)$ to find an $\epsilon$-approximate first-order stationary point.
In addition, we prove that SPIDER-SFO nearly matches the algorithmic lower bound for finding stationary point under the gradient Lipschitz assumption in the finite-sum setting.
Our SPIDER technique can be further applied to find an $(\epsilon, \mathcal{O}(\epsilon^{0.5}))$-approximate second-order stationary point at a gradient computation cost of $\tilde{\mathcal{O}}\left( \min( n^{1/2} \epsilon^{-2}+\epsilon^{-2.5}, \epsilon^{-3} ) \right)$.
Author Information
Cong Fang (Peking University)
Chris Junchi Li (Tencent AI Lab)
Zhouchen Lin (Peking University)
Tong Zhang (Tencent AI Lab)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path-Integrated Differential Estimator »
Wed. Dec 5th through Thu the 6th Room Room 210 #49
More from the Same Authors
-
2021 Spotlight: Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State »
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Yisen Wang · Zhouchen Lin -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : On the convergence of stochastic extragradient for bilinear games using restarted iteration averaging »
Chris Junchi Li · Yaodong Yu · Nicolas Loizou · Gauthier Gidel · Yi Ma · Nicolas Le Roux perso · Michael Jordan -
2021 : Learning Two-Player Mixture Markov Games: Kernel Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2022 Poster: Rethinking Knowledge Graph Evaluation Under the Open-World Assumption »
Haotong Yang · Zhouchen Lin · Muhan Zhang -
2022 : Adan: Adaptive Nesterov Momentum Algorithm for Faster Optimizing Deep Models »
Xingyu Xie · Pan Zhou · Huan Li · Zhouchen Lin · Shuicheng Yan -
2022 : Nesterov Meets Optimism: Rate-Optimal Optimistic-Gradient-Based Method for Stochastic Bilinearly-Coupled Minimax Optimization »
Chris Junchi Li · Angela Yuan · Gauthier Gidel · Michael Jordan -
2022 : A Neural Tangent Kernel Perspective on Function-Space Regularization in Neural Networks »
Zonghao Chen · Xupeng Shi · Tim G. J. Rudner · Qixuan Feng · Weizhong Zhang · Tong Zhang -
2022 : Particle-based Variational Inference with Preconditioned Functional Gradient Flow »
Hanze Dong · Xi Wang · Yong Lin · Tong Zhang -
2022 : Benefits of Overparameterized Convolutional Residual Networks: Function Approximation under Smoothness Constraint »
Hao Liu · Minshuo Chen · Siawpeng Er · Wenjing Liao · Tong Zhang · Tuo Zhao -
2022 : A General Framework for Sample-Efficient Function Approximation in Reinforcement Learning »
Zixiang Chen · Chris Junchi Li · Angela Yuan · Quanquan Gu · Michael Jordan -
2023 Poster: Balance, Imbalance, and Rebalance: Understanding Robust Overfitting from a Minimax Game Perspective »
Yifei Wang · Liangchen Li · Jiansheng Yang · Zhouchen Lin · Yisen Wang -
2023 Poster: A Single-Loop Accelerated Extra-Gradient Difference Algorithm with Improved Complexity Bounds for Constrained Minimax Optimization »
Yuanyuan Liu · Fanhua Shang · Weixin An · Junhao Liu · Hongying Liu · Zhouchen Lin -
2023 Poster: Double Randomized Underdamped Langevin with Dimension-Independent Convergence Guarantee »
Yuanshi Liu · Cong Fang · Tong Zhang -
2023 Poster: Optimal Extragradient-Based Algorithms for Stochastic Variational Inequalities with Separable Structure »
Angela Yuan · Chris Junchi Li · Gauthier Gidel · Michael Jordan · Quanquan Gu · Simon Du -
2023 Poster: Double Pessimism is Provably Efficient for Distributionally Robust Offline Reinforcement Learning: Generic Algorithm and Robust Partial Coverage »
Jose Blanchet · Miao Lu · Tong Zhang · Han Zhong -
2023 Poster: GEQ: Gaussian Kernel Inspired Equilibrium Models »
Mingjie Li · Yisen Wang · Zhouchen Lin -
2023 Poster: Posterior Sampling for Competitive RL: Function Approximation and Partial Observation »
Shuang Qiu · Ziyu Dai · Han Zhong · Zhaoran Wang · Zhuoran Yang · Tong Zhang -
2023 Poster: Task-Robust Pre-Training for Worst-Case Downstream Adaptation »
Jianghui Wang · Yang Chen · Xingyu Xie · Cong Fang · Zhouchen Lin -
2023 Poster: Corruption-Robust Offline Reinforcement Learning with General Function Approximation »
Chenlu Ye · Rui Yang · Quanquan Gu · Tong Zhang -
2023 Poster: Inconsistency, Instability, and Generalization Gap of Deep Neural Network Training »
Rie Johnson · Tong Zhang -
2023 Poster: A Theoretical Analysis of Optimistic Proximal Policy Optimization in Linear Markov Decision Processes »
Han Zhong · Tong Zhang -
2023 Oral: A Single-Loop Accelerated Extra-Gradient Difference Algorithm with Improved Complexity Bounds for Constrained Minimax Optimization »
Yuanyuan Liu · Fanhua Shang · Weixin An · Junhao Liu · Hongying Liu · Zhouchen Lin -
2022 Spotlight: Lightning Talks 4A-3 »
Zhihan Gao · Yabin Wang · Xingyu Qu · Luziwei Leng · Mingqing Xiao · Bohan Wang · Yu Shen · Zhiwu Huang · Xingjian Shi · Qi Meng · Yupeng Lu · Diyang Li · Qingyan Meng · Kaiwei Che · Yang Li · Hao Wang · Huishuai Zhang · Zongpeng Zhang · Kaixuan Zhang · Xiaopeng Hong · Xiaohan Zhao · Di He · Jianguo Zhang · Yaofeng Tu · Bin Gu · Yi Zhu · Ruoyu Sun · Yuyang (Bernie) Wang · Zhouchen Lin · Qinghu Meng · Wei Chen · Wentao Zhang · Bin CUI · Jie Cheng · Zhi-Ming Ma · Mu Li · Qinghai Guo · Dit-Yan Yeung · Tie-Yan Liu · Jianxing Liao -
2022 Spotlight: Online Training Through Time for Spiking Neural Networks »
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Di He · Zhouchen Lin -
2022 Poster: Inducing Neural Collapse in Imbalanced Learning: Do We Really Need a Learnable Classifier at the End of Deep Neural Network? »
Yibo Yang · Shixiang Chen · Xiangtai Li · Liang Xie · Zhouchen Lin · Dacheng Tao -
2022 Poster: Learning Two-Player Markov Games: Neural Function Approximation and Correlated Equilibrium »
Chris Junchi Li · Dongruo Zhou · Quanquan Gu · Michael Jordan -
2022 Poster: When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint »
Yoav S Freund · Yi-An Ma · Tong Zhang -
2022 Poster: Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity »
Alekh Agarwal · Tong Zhang -
2022 Poster: Towards Theoretically Inspired Neural Initialization Optimization »
Yibo Yang · Hong Wang · Haobo Yuan · Zhouchen Lin -
2022 Poster: Nearly Optimal Algorithms for Linear Contextual Bandits with Adversarial Corruptions »
Jiafan He · Dongruo Zhou · Tong Zhang · Quanquan Gu -
2022 Poster: Online Training Through Time for Spiking Neural Networks »
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Di He · Zhouchen Lin -
2021 : HyperDQN: A Randomized Exploration Method for Deep Reinforcement Learning »
Ziniu Li · Yingru Li · Yushun Zhang · Tong Zhang · Zhiquan Luo -
2021 : HyperDQN: A Randomized Exploration Method for Deep Reinforcement Learning »
Ziniu Li · Yingru Li · Yushun Zhang · Tong Zhang · Zhiquan Luo -
2021 : Poster Session 2 (gather.town) »
Wenjie Li · Akhilesh Soni · Jinwuk Seok · Jianhao Ma · Jeffery Kline · Mathieu Tuli · Miaolan Xie · Robert Gower · Quanqi Hu · Matteo Cacciola · Yuanlu Bai · Boyue Li · Wenhao Zhan · Shentong Mo · Junhyung Lyle Kim · Sajad Fathi Hafshejani · Chris Junchi Li · Zhishuai Guo · Harshvardhan Harshvardhan · Neha Wadia · Tatjana Chavdarova · Difan Zou · Zixiang Chen · Aman Gupta · Jacques Chen · Betty Shea · Benoit Dherin · Aleksandr Beznosikov -
2021 : Contributed Talks in Session 2 (Zoom) »
Courtney Paquette · Chris Junchi Li · Jeffery Kline · Junhyung Lyle Kim · Pascal Esser -
2021 Poster: On Training Implicit Models »
Zhengyang Geng · Xin-Yu Zhang · Shaojie Bai · Yisen Wang · Zhouchen Lin -
2021 Poster: A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement Learning »
Christoph Dann · Mehryar Mohri · Tong Zhang · Julian Zimmert -
2021 Poster: Efficient Neural Network Training via Forward and Backward Propagation Sparsification »
Xiao Zhou · Weizhong Zhang · Zonghao Chen · SHIZHE DIAO · Tong Zhang -
2021 Poster: Dissecting the Diffusion Process in Linear Graph Convolutional Networks »
Yifei Wang · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2021 Poster: Error Compensated Distributed SGD Can Be Accelerated »
Xun Qian · Peter Richtarik · Tong Zhang -
2021 Poster: Gauge Equivariant Transformer »
Lingshen He · Yiming Dong · Yisen Wang · Dacheng Tao · Zhouchen Lin -
2021 Poster: Training Feedback Spiking Neural Networks by Implicit Differentiation on the Equilibrium State »
Mingqing Xiao · Qingyan Meng · Zongpeng Zhang · Yisen Wang · Zhouchen Lin -
2021 Poster: Efficient Equivariant Network »
Lingshen He · Yuxuan Chen · zhengyang shen · Yiming Dong · Yisen Wang · Zhouchen Lin -
2021 Poster: Residual Relaxation for Multi-view Representation Learning »
Yifei Wang · Zhengyang Geng · Feng Jiang · Chuming Li · Yisen Wang · Jiansheng Yang · Zhouchen Lin -
2020 : Invited speaker: The Convexity of Learning Infinite-width Deep Neural Networks, Tong Zhang »
Tong Zhang -
2020 Poster: Model Rubik’s Cube: Twisting Resolution, Depth and Width for TinyNets »
Kai Han · Yunhe Wang · Qiulin Zhang · Wei Zhang · Chunjing XU · Tong Zhang -
2020 Poster: A Generalized Neural Tangent Kernel Analysis for Two-layer Neural Networks »
Zixiang Chen · Yuan Cao · Quanquan Gu · Tong Zhang -
2020 Poster: Improved Analysis of Clipping Algorithms for Non-convex Optimization »
Bohang Zhang · Jikai Jin · Cong Fang · Liwei Wang -
2020 Poster: Residual Distillation: Towards Portable Deep Neural Networks without Shortcuts »
Guilin Li · Junlei Zhang · Yunhe Wang · Chuanjian Liu · Matthias Tan · Yunfeng Lin · Wei Zhang · Jiashi Feng · Tong Zhang -
2020 Poster: ISTA-NAS: Efficient and Consistent Neural Architecture Search by Sparse Coding »
Yibo Yang · Hongyang Li · Shan You · Fei Wang · Chen Qian · Zhouchen Lin -
2020 Poster: Stochastic Recursive Gradient Descent Ascent for Stochastic Nonconvex-Strongly-Concave Minimax Problems »
Luo Luo · Haishan Ye · Zhichao Huang · Tong Zhang -
2020 Poster: Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS »
Han Shi · Renjie Pi · Hang Xu · Zhenguo Li · James Kwok · Tong Zhang -
2020 Poster: Decentralized Accelerated Proximal Gradient Descent »
Haishan Ye · Ziang Zhou · Luo Luo · Tong Zhang -
2020 Poster: How to Characterize The Landscape of Overparameterized Convolutional Neural Networks »
Yihong Gu · Weizhong Zhang · Cong Fang · Jason Lee · Tong Zhang -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: Efficient Smooth Non-Convex Stochastic Compositional Optimization via Stochastic Recursive Gradient Descent »
Wenqing Hu · Chris Junchi Li · Xiangru Lian · Ji Liu · Angela Yuan -
2019 Poster: Divergence-Augmented Policy Optimization »
Qing Wang · Yingru Li · Jiechao Xiong · Tong Zhang -
2018 Workshop: NIPS 2018 workshop on Compact Deep Neural Networks with industrial applications »
Lixin Fan · Zhouchen Lin · Max Welling · Yurong Chen · Werner Bailer -
2018 Poster: Communication Compression for Decentralized Training »
Hanlin Tang · Shaoduo Gan · Ce Zhang · Tong Zhang · Ji Liu -
2018 Poster: Stochastic Primal-Dual Method for Empirical Risk Minimization with O(1) Per-Iteration Complexity »
Conghui Tan · Tong Zhang · Shiqian Ma · Ji Liu -
2018 Poster: Joint Sub-bands Learning with Clique Structures for Wavelet Domain Super-Resolution »
Zhisheng Zhong · Tiancheng Shen · Yibo Yang · Zhouchen Lin · Chao Zhang -
2018 Poster: Exponentially Weighted Imitation Learning for Batched Historical Data »
Qing Wang · Jiechao Xiong · Lei Han · peng sun · Han Liu · Tong Zhang -
2018 Poster: Gradient Sparsification for Communication-Efficient Distributed Optimization »
Jianqiao Wangni · Jialei Wang · Ji Liu · Tong Zhang -
2017 Poster: Diffusion Approximations for Online Principal Component Estimation and Global Convergence »
Chris Junchi Li · Mengdi Wang · Tong Zhang -
2017 Poster: Faster and Non-ergodic O(1/K) Stochastic Alternating Direction Method of Multipliers »
Cong Fang · Feng Cheng · Zhouchen Lin -
2017 Oral: Diffusion Approximations for Online Principal Component Estimation and Global Convergence »
Chris Junchi Li · Mengdi Wang · Tong Zhang -
2017 Poster: On Quadratic Convergence of DC Proximal Newton Algorithm in Nonconvex Sparse Learning »
Xingguo Li · Lin Yang · Jason Ge · Jarvis Haupt · Tong Zhang · Tuo Zhao -
2016 Poster: Exact Recovery of Hard Thresholding Pursuit »
Xiaotong Yuan · Ping Li · Tong Zhang -
2016 Poster: Online ICA: Understanding Global Dynamics of Nonconvex Optimization via Diffusion Processes »
Chris Junchi Li · Zhaoran Wang · Han Liu -
2016 Poster: Learning Additive Exponential Family Graphical Models via $\ell_{2,1}$-norm Regularized M-Estimation »
Xiaotong Yuan · Ping Li · Tong Zhang · Qingshan Liu · Guangcan Liu -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang -
2015 Poster: Local Smoothness in Variance Reduced Optimization »
Daniel Vainsencher · Han Liu · Tong Zhang -
2015 Poster: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2015 Spotlight: Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding »
Rie Johnson · Tong Zhang -
2015 Poster: Accelerated Proximal Gradient Methods for Nonconvex Programming »
Huan Li · Zhouchen Lin -
2013 Poster: Accelerating Stochastic Gradient Descent using Predictive Variance Reduction »
Rie Johnson · Tong Zhang -
2013 Poster: Accelerated Mini-Batch Stochastic Dual Coordinate Ascent »
Shai Shalev-Shwartz · Tong Zhang -
2012 Workshop: Modern Nonparametric Methods in Machine Learning »
Sivaraman Balakrishnan · Arthur Gretton · Mladen Kolar · John Lafferty · Han Liu · Tong Zhang -
2012 Poster: Selective Labeling via Error Bound Minimization »
Quanquan Gu · Tong Zhang · Chris Ding · Jiawei Han -
2011 Poster: Learning to Search Efficiently in High Dimensions »
Zhen Li · Huazhong Ning · Liangliang Cao · Tong Zhang · Yihong Gong · Thomas S Huang -
2011 Poster: Spectral Methods for Learning Multivariate Latent Tree Structure »
Anima Anandkumar · Kamalika Chaudhuri · Daniel Hsu · Sham M Kakade · Le Song · Tong Zhang -
2011 Poster: Greedy Model Averaging »
Dong Dai · Tong Zhang -
2010 Poster: Deep Coding Network »
Yuanqing Lin · Tong Zhang · Shenghuo Zhu · Kai Yu -
2010 Poster: Agnostic Active Learning Without Constraints »
Alina Beygelzimer · Daniel Hsu · John Langford · Tong Zhang -
2009 Poster: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2009 Poster: Nonlinear Learning using Local Coordinate Coding »
Kai Yu · Tong Zhang · Yihong Gong -
2009 Oral: Multi-Label Prediction via Compressed Sensing »
Daniel Hsu · Sham M Kakade · John Langford · Tong Zhang -
2008 Poster: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Oral: Adaptive Forward-Backward Greedy Algorithm for Sparse Learning with Linear Models »
Tong Zhang -
2008 Poster: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Spotlight: Sparse Online Learning via Truncated Gradient »
John Langford · Lihong Li · Tong Zhang -
2008 Poster: Multi-stage Convex Relaxation for Learning with Sparse Regularization »
Tong Zhang -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun -
2007 Poster: The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information »
John Langford · Tong Zhang -
2006 Poster: Learning on Graph with Laplacian Regularization »
Rie Ando · Tong Zhang