Timezone: »
Integrating model-free and model-based approaches in reinforcement learning has the potential to achieve the high performance of model-free algorithms with low sample complexity. However, this is difficult because an imperfect dynamics model can degrade the performance of the learning algorithm, and in sufficiently complex environments, the dynamics model will almost always be imperfect. As a result, a key challenge is to combine model-based approaches with model-free learning in such a way that errors in the model do not degrade performance. We propose stochastic ensemble value expansion (STEVE), a novel model-based technique that addresses this issue. By dynamically interpolating between model rollouts of various horizon lengths for each individual example, STEVE ensures that the model is only utilized when doing so does not introduce significant errors. Our approach outperforms model-free baselines on challenging continuous control benchmarks with an order-of-magnitude increase in sample efficiency, and in contrast to previous model-based approaches, performance does not degrade in complex environments.
Author Information
Jacob Buckman (Johns Hopkins University)
Danijar Hafner (Google Brain & UCL)
George Tucker (Google Brain)
Eugene Brevdo (Google)
Honglak Lee (Google Brain)
More from the Same Authors
-
2020 Workshop: Offline Reinforcement Learning »
Aviral Kumar · Rishabh Agarwal · George Tucker · Lihong Li · Doina Precup · Aviral Kumar -
2020 Poster: Predictive Information Accelerates Learning in RL »
Kuang-Huei Lee · Ian Fischer · Anthony Liu · Yijie Guo · Honglak Lee · John Canny · Sergio Guadarrama -
2020 Poster: Ode to an ODE »
Krzysztof Choromanski · Jared Quincy Davis · Valerii Likhosherstov · Xingyou Song · Jean-Jacques Slotine · Jacob Varley · Honglak Lee · Adrian Weller · Vikas Sindhwani -
2020 Poster: DisARM: An Antithetic Gradient Estimator for Binary Latent Variables »
Zhe Dong · Andriy Mnih · George Tucker -
2020 Spotlight: DisARM: An Antithetic Gradient Estimator for Binary Latent Variables »
Zhe Dong · Andriy Mnih · George Tucker -
2020 Poster: Conservative Q-Learning for Offline Reinforcement Learning »
Aviral Kumar · Aurick Zhou · George Tucker · Sergey Levine -
2019 Poster: Stabilizing Off-Policy Q-Learning via Bootstrapping Error Reduction »
Aviral Kumar · Justin Fu · George Tucker · Sergey Levine -
2019 Poster: Energy-Inspired Models: Learning with Sampler-Induced Distributions »
John Lawson · George Tucker · Bo Dai · Rajesh Ranganath -
2019 Poster: Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse »
James Lucas · George Tucker · Roger Grosse · Mohammad Norouzi -
2019 Poster: Unsupervised learning of object structure and dynamics from videos »
Matthias Minderer · Chen Sun · Ruben Villegas · Forrester Cole · Kevin Murphy · Honglak Lee -
2018 Poster: Sample-Efficient Reinforcement Learning with Stochastic Ensemble Value Expansion »
Jacob Buckman · Danijar Hafner · George Tucker · Eugene Brevdo · Honglak Lee -
2018 Poster: Data-Efficient Hierarchical Reinforcement Learning »
Ofir Nachum · Shixiang (Shane) Gu · Honglak Lee · Sergey Levine -
2018 Poster: Content preserving text generation with attribute controls »
Lajanugen Logeswaran · Honglak Lee · Samy Bengio -
2017 Workshop: Deep Learning at Supercomputer Scale »
Erich Elsen · Danijar Hafner · Zak Stone · Brennan Saeta -
2017 Poster: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models »
George Tucker · Andriy Mnih · Chris J Maddison · John Lawson · Jascha Sohl-Dickstein -
2017 Oral: REBAR: Low-variance, unbiased gradient estimates for discrete latent variable models »
George Tucker · Andriy Mnih · Chris J Maddison · John Lawson · Jascha Sohl-Dickstein -
2017 Poster: Filtering Variational Objectives »
Chris Maddison · John Lawson · George Tucker · Nicolas Heess · Mohammad Norouzi · Andriy Mnih · Arnaud Doucet · Yee Teh -
2017 Poster: Learning Hierarchical Information Flow with Recurrent Neural Modules »
Danijar Hafner · Alexander Irpan · James Davidson · Nicolas Heess