Timezone: »
Regression with group-sparsity penalty plays a central role in high-dimensional prediction problems. Most of existing methods require the group structure to be known a priori. In practice, this may be a too strong assumption, potentially hampering the effectiveness of the regularization method. To circumvent this issue, we present a method to estimate the group structure by means of a continuous bilevel optimization problem where the data is split into training and validation sets. Our approach relies on an approximation scheme where the lower level problem is replaced by a smooth dual forward-backward algorithm with Bregman distances. We provide guarantees regarding the convergence of the approximate procedure to the exact problem and demonstrate the well behaviour of the proposed method on synthetic experiments. Finally, a preliminary application to genes expression data is tackled with the purpose of unveiling functional groups.
Author Information
Jordan Frecon (Istituto Italiano di Tecnologia)
Saverio Salzo (Istituto Italiano di Tecnologia)
Massimiliano Pontil (IIT & UCL)
Related Events (a corresponding poster, oral, or spotlight)
-
2018 Poster: Bilevel learning of the Group Lasso structure »
Thu. Dec 6th through Fri the 7th Room Room 210 #92
More from the Same Authors
-
2021 : Linear Convergence of Batch Greenkhorn for Regularized Multimarginal Optimal Transport »
Vladimir Kostic · Saverio Salzo · Massimiliano Pontil -
2020 Poster: Exploiting Higher Order Smoothness in Derivative-free Optimization and Continuous Bandits »
Arya Akhavan · Massimiliano Pontil · Alexandre Tsybakov -
2020 Poster: The Advantage of Conditional Meta-Learning for Biased Regularization and Fine Tuning »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2020 Poster: Estimating weighted areas under the ROC curve »
Andreas Maurer · Massimiliano Pontil -
2019 Poster: Online-Within-Online Meta-Learning »
Giulia Denevi · Dimitris Stamos · Carlo Ciliberto · Massimiliano Pontil -
2019 Poster: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2019 Spotlight: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2018 Poster: Learning To Learn Around A Common Mean »
Giulia Denevi · Carlo Ciliberto · Dimitris Stamos · Massimiliano Pontil -
2017 : An Efficient Method to Impose Fairness in Linear Models »
Massimiliano Pontil · John Shawe-Taylor -
2017 Workshop: Workshop on Prioritising Online Content »
John Shawe-Taylor · Massimiliano Pontil · Nicolò Cesa-Bianchi · Emine Yilmaz · Chris Watkins · Sebastian Riedel · Marko Grobelnik -
2017 Poster: Consistent Multitask Learning with Nonlinear Output Relations »
Carlo Ciliberto · Alessandro Rudi · Lorenzo Rosasco · Massimiliano Pontil -
2016 Poster: Mistake Bounds for Binary Matrix Completion »
Mark Herbster · Stephen Pasteris · Massimiliano Pontil -
2015 : The Benefit of Multitask Representation Learning »
Massimiliano Pontil -
2014 Poster: Spectral k-Support Norm Regularization »
Andrew McDonald · Massimiliano Pontil · Dimitris Stamos -
2013 Workshop: New Directions in Transfer and Multi-Task: Learning Across Domains and Tasks »
Urun Dogan · Marius Kloft · Tatiana Tommasi · Francesco Orabona · Massimiliano Pontil · Sinno Jialin Pan · Shai Ben-David · Arthur Gretton · Fei Sha · Marco Signoretto · Rajhans Samdani · Yun-Qian Miao · Mohammad Gheshlaghi azar · Ruth Urner · Christoph Lampert · Jonathan How -
2013 Poster: A New Convex Relaxation for Tensor Completion »
Bernardino Romera-Paredes · Massimiliano Pontil -
2012 Poster: Optimal kernel choice for large-scale two-sample tests »
Arthur Gretton · Bharath Sriperumbudur · Dino Sejdinovic · Heiko Strathmann · Sivaraman Balakrishnan · Massimiliano Pontil · Kenji Fukumizu -
2010 Spotlight: A Family of Penalty Functions for Structured Sparsity »
Charles A Micchelli · Jean M Morales · Massimiliano Pontil -
2010 Poster: A Family of Penalty Functions for Structured Sparsity »
Charles A Micchelli · Jean M Morales · Massimiliano Pontil -
2008 Poster: Fast Prediction on a Tree »
Mark Herbster · Massimiliano Pontil · Sergio Rojas Galeano -
2008 Oral: Fast Prediction on a Tree »
Mark Herbster · Massimiliano Pontil · Sergio Rojas Galeano -
2008 Poster: On-Line Prediction on Large Diameter Graphs »
Mark Herbster · Massimiliano Pontil · Guy Lever -
2007 Spotlight: A Spectral Regularization Framework for Multi-Task Structure Learning »
Andreas Argyriou · Charles A. Micchelli · Massimiliano Pontil · Yiming Ying -
2007 Poster: A Spectral Regularization Framework for Multi-Task Structure Learning »
Andreas Argyriou · Charles A. Micchelli · Massimiliano Pontil · Yiming Ying -
2006 Poster: Prediction on a Graph with a Perceptron »
Mark Herbster · Massimiliano Pontil -
2006 Spotlight: Prediction on a Graph with a Perceptron »
Mark Herbster · Massimiliano Pontil -
2006 Poster: Multi-Task Feature Learning »
Andreas Argyriou · Theos Evgeniou · Massimiliano Pontil