`

Timezone: »

 
Contributed talk 6: Slalom: Fast, Verifiable and Private Execution of Neural Networks in Trusted Hardware
Florian Tramer

Sat Dec 08 12:45 PM -- 01:00 PM (PST) @ None

As Machine Learning (ML) gets applied to security-critical or sensitive domains, there is a growing need for integrity and privacy for outsourced ML computations. A pragmatic solution comes from Trusted Execution Environments (TEEs), which use hardware and software protections to isolate sensitive computations from the untrusted software stack. However, these isolation guarantees come at a price in performance, compared to untrusted alternatives. This paper initiates the study of high performance execution of Deep Neural Networks (DNNs) in TEEs by efficiently partitioning DNN computations between trusted and untrusted devices. Building upon an efficient outsourcing scheme for matrix multiplication, we propose Slalom, a framework that securely delegates execution of all linear layers in a DNN from a TEE (e.g., Intel SGX or Sanctum) to a faster, yet untrusted, co-located processor. We evaluate Slalom by executing DNNs in an Intel SGX enclave, which selectively delegates work to an untrusted GPU. For two canonical DNNs, VGG16 and MobileNet, we obtain 20× and 6× increases in throughput for verifiable inference, and 11× and 4× for verifiable and private inference.

Author Information

Florian Tramer (Stanford University)

More from the Same Authors