Timezone: »
Rich Caruna - Justice May Be Blind But It Shouldn’t Be Opaque: The Risk of Using Black-Box Models in Healthcare & Criminal Justice
Rich Caruana
Fri Dec 07 06:00 AM -- 06:30 AM (PST) @
In machine learning often a tradeoff must be made between accuracy and intelligibility. This tradeoff sometimes limits the accuracy of models that can be safely deployed in mission-critical applications such as healthcare and criminal justice where being able to understand, validate, edit, and ultimately trust a learned model is important. In this talk I’ll present a case study where intelligibility is critical to uncover surprising patterns in the data that would have made deploying a black-box model dangerous. I’ll also show how distillation with intelligible models can be used to detect bias inside black-box models.
Author Information
Rich Caruana (Microsoft)
More from the Same Authors
-
2021 Spotlight: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2021 : GAM Changer: Editing Generalized Additive Models with Interactive Visualization »
Zijie Jay Wang · Harsha Nori · Duen Horng Chau · Jennifer Wortman Vaughan · Rich Caruana -
2021 : Invited talk (ML) - Rich Caruana »
Rich Caruana -
2021 Poster: Neural Additive Models: Interpretable Machine Learning with Neural Nets »
Rishabh Agarwal · Levi Melnick · Nicholas Frosst · Xuezhou Zhang · Ben Lengerich · Rich Caruana · Geoffrey Hinton -
2019 Poster: Efficient Forward Architecture Search »
Hanzhang Hu · John Langford · Rich Caruana · Saurajit Mukherjee · Eric Horvitz · Debadeepta Dey -
2018 : Panel Discussion »
Rich Caruana · Mike Schuster · Ralf Schlüter · Hynek Hermansky · Renato De Mori · Samy Bengio · Michiel Bacchiani · Jason Eisner -
2018 : Rich Caruana, "Friends Don’t Let Friends Deploy Black-Box Models: The Importance of Intelligibility in Machine Learning" »
Rich Caruana -
2018 : Panel on research process »
Zachary Lipton · Charles Sutton · Finale Doshi-Velez · Hanna Wallach · Suchi Saria · Rich Caruana · Thomas Rainforth -
2018 Workshop: Critiquing and Correcting Trends in Machine Learning »
Thomas Rainforth · Matt Kusner · Benjamin Bloem-Reddy · Brooks Paige · Rich Caruana · Yee Whye Teh -
2017 : Invited Talk 6 »
Rich Caruana -
2017 : Poster spotlights »
Hiroshi Kuwajima · Masayuki Tanaka · Qingkai Liang · Matthieu Komorowski · Fanyu Que · Thalita F Drumond · Aniruddh Raghu · Leo Anthony Celi · Christina Göpfert · Andrew Ross · Sarah Tan · Rich Caruana · Yin Lou · Devinder Kumar · Graham Taylor · Forough Poursabzi-Sangdeh · Jennifer Wortman Vaughan · Hanna Wallach -
2017 Symposium: Interpretable Machine Learning »
Andrew Wilson · Jason Yosinski · Patrice Simard · Rich Caruana · William Herlands -
2015 : The risk of deploying unintelligible models in healthcare »
Rich Caruana -
2014 Poster: Do Deep Nets Really Need to be Deep? »
Jimmy Ba · Rich Caruana -
2013 Poster: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2013 Spotlight: Using multiple samples to learn mixture models »
Jason D Lee · Ran Gilad-Bachrach · Rich Caruana -
2010 Session: Spotlights Session 7 »
Rich Caruana -
2010 Session: Oral Session 8 »
Rich Caruana