`

Timezone: »

 
Workshop
Machine Learning for Health (ML4H): What makes machine learning in medicine different?
Andrew Beam · Tristan Naumann · Brett Beaulieu-Jones · Irene Y Chen · Madalina Fiterau · Samuel Finlayson · Emily Alsentzer · Adrian Dalca · Matthew McDermott

Fri Dec 13 08:00 AM -- 06:40 PM (PST) @ West Ballroom A
Event URL: https://ml4health.github.io/ »

The goal of the NeurIPS 2019 Machine Learning for Health Workshop (ML4H) is to foster collaborations that meaningfully impact medicine by bringing together clinicians, health data experts, and machine learning researchers. Attendees at this workshop can also expect to broaden their network of collaborators to include clinicians and machine learning researchers who are focused on solving some of the most import problems in medicine and healthcare. The organizers of this proposal have successfully run NeurIPS workshops in the past and are well-equipped to run this year’s workshop should this proposal be accepted.

This year’s theme of “What makes machine learning in medicine different?” aims to elucidate the obstacles that make the development of machine learning models for healthcare uniquely challenging. To speak to this theme, we have received commitments to speak from some of the leading researchers and physicians in this area. Below is a list of confirmed speakers who have agreed to participate.

Luke Oakden-Raynor, MBBS (Adelaide)
Russ Altman, MD/PhD (Stanford)
Lilly Peng, MD/PhD (Google)
Daphne Koller, PhD (in sitro)
Jeff Dean, PhD (Google)

Attendees at the workshop will gain an appreciation for problems that are unique to the application of machine learning for healthcare and a better understanding of how machine learning techniques may be leveraged to solve important clinical problems. This year’s workshop builds on the last two NeurIPS ML4H workshops, which were both attended by more than 500 people each year, and helped form the foundations of an emerging research community.

Please see the attached document for the full program.

Author Information

Andrew Beam (Harvard)
Tristan Naumann (Microsoft Research)
Brett Beaulieu-Jones (Harvard Medical School)
Irene Y Chen (MIT)

Irene is a PhD student at MIT focusing on applications on health care and fairness. She did her undergrad at Harvard where I studied applied math and computational engineering. Before starting at MIT, she worked for two years at Dropbox as a data scientist and machine learning engineer.

Madalina Fiterau (CMU)
Samuel Finlayson (Harvard Medical School)

Samuel Finlayson is a MD-PhD Candidate studying jointly at Harvard Medical School and Massachusetts Institute of Technology. His research focuses on developing machine learning methods for precision medicine. Current applications focus on neurological diseases and extend techniques from computer vision, natural language processing, and single-cell genomics. Previously, he studied Biomedical Informatics at Stanford University.

Emily Alsentzer (MIT)
Adrian Dalca (MIT, HMS)
Matthew McDermott (MIT)

More from the Same Authors

  • 2020 : Learning MRI contrast agnostic registration »
    Malte Hoffmann · Adrian Dalca
  • 2021 : Poster: The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
    Irene Y Chen · Hal Daumé III · Solon Barocas
  • 2021 : Panel II: Machine decisions »
    Anca Dragan · Karen Levy · Himabindu Lakkaraju · Ariel Rosenfeld · Maithra Raghu · Irene Y Chen
  • 2021 Workshop: Machine learning from ground truth: New medical imaging datasets for unsolved medical problems. »
    Katy Haynes · Ziad Obermeyer · Emma Pierson · Marzyeh Ghassemi · Matthew Lungren · Sendhil Mullainathan · Matthew McDermott
  • 2021 : The Many Roles that Causal Reasoning Plays in Reasoning about Fairness in Machine Learning »
    Irene Y Chen · Hal Daumé III · Solon Barocas
  • 2021 Poster: Meta-learning to Improve Pre-training »
    Aniruddh Raghu · Jonathan Lorraine · Simon Kornblith · Matthew McDermott · David Duvenaud
  • 2020 Workshop: Machine Learning for Health (ML4H): Advancing Healthcare for All »
    Stephanie Hyland · Allen Schmaltz · Charles Onu · Ehi Nosakhare · Emily Alsentzer · Irene Y Chen · Matthew McDermott · Subhrajit Roy · Benjamin Akera · Dani Kiyasseh · Fabian Falck · Griffin Adams · Ioana Bica · Oliver J Bear Don't Walk IV · Suproteem Sarkar · Stephen Pfohl · Andrew Beam · Brett Beaulieu-Jones · Danielle Belgrave · Tristan Naumann
  • 2020 Poster: Subgraph Neural Networks »
    Emily Alsentzer · Samuel Finlayson · Michelle Li · Marinka Zitnik
  • 2020 Symposium: COVID-19 Symposium Day 2 »
    Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie
  • 2020 Symposium: COVID-19 Symposium Day 1 »
    Andrew Beam · Tristan Naumann · Katherine Heller · Elaine Nsoesie
  • 2019 : Coffee Break and Poster Session »
    Rameswar Panda · Prasanna Sattigeri · Kush Varshney · Karthikeyan Natesan Ramamurthy · Harvineet Singh · Vishwali Mhasawade · Shalmali Joshi · Laleh Seyyed-Kalantari · Matthew McDermott · Gal Yona · James Atwood · Hansa Srinivasan · Yonatan Halpern · D. Sculley · Behrouz Babaki · Margarida Carvalho · Josie Williams · Narges Razavian · Haoran Zhang · Amy Lu · Irene Y Chen · Xiaojie Mao · Angela Zhou · Nathan Kallus
  • 2019 Workshop: Fair ML in Healthcare »
    Shalmali Joshi · Irene Y Chen · Ziad Obermeyer · Shems Saleh · Sendhil Mullainathan
  • 2019 Poster: Learning Conditional Deformable Templates with Convolutional Networks »
    Adrian Dalca · Marianne Rakic · John Guttag · Mert Sabuncu
  • 2018 : Poster session »
    David Zeng · Marzieh S. Tahaei · Shuai Chen · Felix Meister · Meet Shah · Anant Gupta · Ajil Jalal · Eirini Arvaniti · David Zimmerer · Konstantinos Kamnitsas · Pedro Ballester · Nathaniel Braman · Udaya Kumar · Sil C. van de Leemput · Junaid Qadir · Hoel Kervadec · Mohamed Akrout · Adrian Tousignant · Matthew Ng · Raghav Mehta · Miguel Monteiro · Sumana Basu · Jonas Adler · Adrian Dalca · Jizong Peng · Sungyeob Han · Xiaoxiao Li · Karthik Gopinath · Joseph Cheng · Bogdan Georgescu · Kha Gia Quach · Karthik Sarma · David Van Veen
  • 2018 : Oral session II »
    Sil C. van de Leemput · Adrian Dalca · Karthik Gopinath
  • 2018 : Poster Session I »
    Aniruddh Raghu · Daniel Jarrett · Kathleen Lewis · Elias Chaibub Neto · Nicholas Mastronarde · Shazia Akbar · Chun-Hung Chao · Henghui Zhu · Seth Stafford · Luna Zhang · Jen-Tang Lu · Changhee Lee · Adityanarayanan Radhakrishnan · Fabian Falck · Liyue Shen · Daniel Neil · Yusuf Roohani · Aparna Balagopalan · Brett Marinelli · Hagai Rossman · Sven Giesselbach · Jose Javier Gonzalez Ortiz · Edward De Brouwer · Byung-Hoon Kim · Rafid Mahmood · Tzu Ming Hsu · Antonio Ribeiro · Rumi Chunara · Agni Orfanoudaki · Kristen Severson · Mingjie Mai · Sonali Parbhoo · Albert Haque · Viraj Prabhu · Di Jin · Alena Harley · Geoffroy Dubourg-Felonneau · Xiaodan Hu · Maithra Raghu · Jonathan Warrell · Nelson Johansen · Wenyuan Li · Marko Järvenpää · Satya Narayan Shukla · Sarah Tan · Vincent Fortuin · Beau Norgeot · Yi-Te Hsu · Joel H Saltz · Veronica Tozzo · Andrew Miller · Guillaume Ausset · Azin Asgarian · Francesco Paolo Casale · Antoine Neuraz · Bhanu Pratap Singh Rawat · Turgay Ayer · Xinyu Li · Mehul Motani · Nathaniel Braman · Laetitia M Shao · Adrian Dalca · Hyunkwang Lee · Emma Pierson · Sandesh Ghimire · Yuji Kawai · Owen Lahav · Anna Goldenberg · Denny Wu · Pavitra Krishnaswamy · Colin Pawlowski · Arijit Ukil · Yuhui Zhang
  • 2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
    Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen
  • 2018 Poster: Gaussian Process Prior Variational Autoencoders »
    Francesco Paolo Casale · Adrian Dalca · Luca Saglietti · Jennifer Listgarten · Nicolo Fusi
  • 2017 : Coffee break and Poster Session I »
    Nishith Khandwala · Steve Gallant · Gregory Way · Aniruddh Raghu · Li Shen · Aydan Gasimova · Alican Bozkurt · William Boag · Daniel Lopez-Martinez · Ulrich Bodenhofer · Samaneh Nasiri GhoshehBolagh · Michelle Guo · Christoph Kurz · Kirubin Pillay · Kimis Perros · George H Chen · Alexandre Yahi · Madhumita Sushil · Sanjay Purushotham · Elena Tutubalina · Tejpal Virdi · Marc-Andre Schulz · Samuel Weisenthal · Bharat Srikishan · Petar Veličković · Kartik Ahuja · Andrew Miller · Erin Craig · Disi Ji · Filip Dabek · Chloé Pou-Prom · Hejia Zhang · Janani Kalyanam · Wei-Hung Weng · Harish Bhat · Hugh Chen · Simon Kohl · Mingwu Gao · Tingting Zhu · Ming-Zher Poh · Iñigo Urteaga · Antoine Honoré · Alessandro De Palma · Maruan Al-Shedivat · Pranav Rajpurkar · Matthew McDermott · Vincent Chen · Yanan Sui · Yun-Geun Lee · Li-Fang Cheng · Chen Fang · Sibt ul Hussain · Cesare Furlanello · Zeev Waks · Hiba Chougrad · Hedvig Kjellstrom · Finale Doshi-Velez · Wolfgang Fruehwirt · Yanqing Zhang · Lily Hu · Junfang Chen · Sunho Park · Gatis Mikelsons · Jumana Dakka · Stephanie Hyland · yann chevaleyre · Hyunwoo Lee · Xavier Giro-i-Nieto · David Kale · Michael Hughes · Gabriel Erion · Rishab Mehra · William Zame · Stojan Trajanovski · Prithwish Chakraborty · Kelly Peterson · Muktabh Mayank Srivastava · Amy Jin · Heliodoro Tejeda Lemus · Priyadip Ray · Tamas Madl · Joseph Futoma · Enhao Gong · Syed Rameel Ahmad · Eric Lei · Ferdinand Legros
  • 2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
    Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka