Timezone: »
In recent years, there has been an increasing number of machine learning models and algorithms based on the theory of temporal point processes, which is a mathematical framework to model asynchronous event data. These models and algorithm have found a wide range of human-centered applications, from social and information networks and recommender systems to crime prediction and health. Moreover, this emerging line of research has already established connections to deep learning, deep generative models, Bayesian nonparametrics, causal inference, stochastic optimal control and reinforcement learning. However, despite these recent advances, learning with temporal point processes is still a relatively niche topic within the machine learning community---there are only a few research groups across the world with the necessary expertise to make progress. In this workshop, we aim to popularize temporal point processes within the machine learning community at large. In our view, this is the right time to organize such a workshop because, as algorithmic decisions becomes more consequential to individuals and society, temporal point processes will play a major role on the development of human-centered machine learning models and algorithms accounting for the feedback loop between algorithmic and human decisions, which are inherently asynchronous events. Moreover, it will be a natural follow up of a very successful and well-attended ICML 2018 tutorial on learning with temporal point processes, which two of us recently taught.
Sat 8:30 a.m. - 8:35 a.m.
|
Welcome Address and Introduction
|
🔗 |
Sat 8:35 a.m. - 9:15 a.m.
|
Invited Talk by Negar Kiyavash
(
Invited Talk
)
|
Negar Kiyavash 🔗 |
Sat 9:15 a.m. - 9:30 a.m.
|
Fused Gromov-Wasserstein Alignment for Hawkes Processes
(
Presentation 1
)
|
🔗 |
Sat 9:30 a.m. - 9:45 a.m.
|
Insider Threat Detection via Hierarchical Neural Temporal Point Processes
(
Presentation 2
)
|
Xintao Wu 🔗 |
Sat 9:45 a.m. - 10:30 a.m.
|
Coffee Break
|
🔗 |
Sat 10:30 a.m. - 11:10 a.m.
|
Invited Talk By Niloy Ganguly
(
Invited Talk
)
|
niloy ganguly 🔗 |
Sat 11:10 a.m. - 11:25 a.m.
|
Intermittent Demand Forecasting with Deep RenewalProcesses
(
Presentation 3
)
|
Ali Caner Turkmen 🔗 |
Sat 11:25 a.m. - 11:40 a.m.
|
Temporal Logic Point Processes
(
Presentation 4
)
|
🔗 |
Sat 11:40 a.m. - 11:55 a.m.
|
The Graph Hawkes Network for Reasoning on Temporal Knowledge Graphs
(
Presentation 5
)
|
🔗 |
Sat 11:55 a.m. - 12:10 p.m.
|
Multivariate coupling estimation between continuous signals and point processes
(
Presentation 6
)
|
Michel Besserve 🔗 |
Sat 12:10 p.m. - 1:50 p.m.
|
Lunch Break
|
🔗 |
Sat 1:50 p.m. - 2:30 p.m.
|
Invited Talk by Walter Dempsey
(
Invited Talk
)
|
Walter Dempsey 🔗 |
Sat 2:30 p.m. - 2:45 p.m.
|
Better Approximate Inference for Partial Likelihood Models with a Latent Structure
(
Presentation 7
)
|
Amrith Setlur 🔗 |
Sat 2:45 p.m. - 2:45 p.m.
|
Deep Point Process Destructors
(
Presentation 8
)
|
🔗 |
Sat 3:00 p.m. - 3:15 p.m.
|
A sleep-wake detection algorithm for memory-constrained wearable devices: Change Point Decoder
(
Presentation 9
)
|
Ayse Cakmak 🔗 |
Sat 3:15 p.m. - 3:30 p.m.
|
Topics are not Marks: Modeling Text-based Cascades using Multi-network Hawkes Process
(
Presentation 10
)
|
Jayesh Choudhari 🔗 |
Sat 3:30 p.m. - 4:45 p.m.
|
Poster Setup + Coffee Break
|
🔗 |
Sat 4:15 p.m. - 5:00 p.m.
|
Temporal point process models vs. discrete time models
(
Panel discussion
)
|
🔗 |
Sat 5:00 p.m. - 6:00 p.m.
|
Poster Session
|
Ayse Cakmak · Yunkai Zhang · Srijith Prabhakarannair Kusumam · Mohamed Osama Ahmed · Xintao Wu · Jayesh Choudhari · David I Inouye · Thomas Taylor · Michel Besserve · Ali Caner Turkmen · Kazi Islam · Antonio Artés · Amrith Setlur · Zhanghua Fu · Zhen Han · Abir De · Nan Du · Pablo Sanchez Martin
|
Author Information
Manuel Rodriguez (MPI SWS)
Le Song (Georgia Institute of Technology)
Isabel Valera (Max Planck Institute for Intelligent Systems)
Yan Liu (University of Southern California)
Abir De (MPI-SWS)
Hongyuan Zha (Georgia Tech)
More from the Same Authors
-
2021 : Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning »
Jiani Huang · Ziyang Li · Binghong Chen · Karan Samel · Mayur Naik · Le Song · Xujie Si -
2021 : Large Scale Coordination Transfer for Cooperative Multi-Agent Reinforcement Learning »
Ethan Wang · Binghong Chen · Le Song -
2021 : Reinforcement Learning Under Algorithmic Triage »
Eleni Straitouri · Adish Singla · Vahid Balazadeh Meresht · Manuel Rodriguez -
2022 Poster: Counterfactual Temporal Point Processes »
Kimia Noorbakhsh · Manuel Rodriguez -
2022 : A Synthetic Limit Order Book Dataset for Benchmarking Forecasting Algorithms under Distributional Shift »
Defu Cao · Yousef El-Laham · Loc Trinh · Svitlana Vyetrenko · Yan Liu -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Counterfactual Temporal Point Processes »
Kimia Noorbakhsh · Manuel Rodriguez -
2022 Poster: Sparse Interaction Additive Networks via Feature Interaction Detection and Sparse Selection »
James Enouen · Yan Liu -
2022 Poster: Uncovering the Structural Fairness in Graph Contrastive Learning »
Ruijia Wang · Xiao Wang · Chuan Shi · Le Song -
2022 Poster: Counterfactual Neural Temporal Point Process for Estimating Causal Influence of Misinformation on Social Media »
Yizhou Zhang · Defu Cao · Yan Liu -
2021 Workshop: Human Centered AI »
Michael Muller · Plamen P Angelov · Shion Guha · Marina Kogan · Gina Neff · Nuria Oliver · Manuel Rodriguez · Adrian Weller -
2021 Poster: VigDet: Knowledge Informed Neural Temporal Point Process for Coordination Detection on Social Media »
Yizhou Zhang · Karishma Sharma · Yan Liu -
2021 Poster: A Biased Graph Neural Network Sampler with Near-Optimal Regret »
Qingru Zhang · David Wipf · Quan Gan · Le Song -
2021 Poster: Locality Sensitive Teaching »
Zhaozhuo Xu · Beidi Chen · Chaojian Li · Weiyang Liu · Le Song · Yingyan Lin · Anshumali Shrivastava -
2021 Poster: Multi-task Learning of Order-Consistent Causal Graphs »
Xinshi Chen · Haoran Sun · Caleb Ellington · Eric Xing · Le Song -
2021 Poster: RoMA: Robust Model Adaptation for Offline Model-based Optimization »
Sihyun Yu · Sungsoo Ahn · Le Song · Jinwoo Shin -
2021 Poster: Bridging Explicit and Implicit Deep Generative Models via Neural Stein Estimators »
Qitian Wu · Rui Gao · Hongyuan Zha -
2021 Poster: Differentiable Learning Under Triage »
Nastaran Okati · Abir De · Manuel Rodriguez -
2021 Poster: Counterfactual Explanations in Sequential Decision Making Under Uncertainty »
Stratis Tsirtsis · Abir De · Manuel Rodriguez -
2021 Poster: Random Noise Defense Against Query-Based Black-Box Attacks »
Zeyu Qin · Yanbo Fan · Hongyuan Zha · Baoyuan Wu -
2021 Poster: Scallop: From Probabilistic Deductive Databases to Scalable Differentiable Reasoning »
Jiani Huang · Ziyang Li · Binghong Chen · Karan Samel · Mayur Naik · Le Song · Xujie Si -
2020 : Contributed Talk 3: Algorithmic Recourse: from Counterfactual Explanations to Interventions »
Amir-Hossein Karimi · Bernhard Schölkopf · Isabel Valera -
2020 Workshop: I Can’t Believe It’s Not Better! Bridging the gap between theory and empiricism in probabilistic machine learning »
Jessica Forde · Francisco Ruiz · Melanie Fernandez Pradier · Aaron Schein · Finale Doshi-Velez · Isabel Valera · David Blei · Hanna Wallach -
2020 Poster: Understanding Deep Architecture with Reasoning Layer »
Xinshi Chen · Yufei Zhang · Christoph Reisinger · Le Song -
2020 Poster: Learning to Incentivize Other Learning Agents »
Jiachen Yang · Ang Li · Mehrdad Farajtabar · Peter Sunehag · Edward Hughes · Hongyuan Zha -
2020 Poster: Network Diffusions via Neural Mean-Field Dynamics »
Shushan He · Hongyuan Zha · Xiaojing Ye -
2020 Poster: Multi-agent Trajectory Prediction with Fuzzy Query Attention »
Nitin Kamra · Hao Zhu · Dweep Trivedi · Ming Zhang · Yan Liu -
2020 Poster: Algorithmic recourse under imperfect causal knowledge: a probabilistic approach »
Amir-Hossein Karimi · Julius von Kügelgen · Bernhard Schölkopf · Isabel Valera -
2020 Poster: Differentiable Top-k with Optimal Transport »
Yujia Xie · Hanjun Dai · Minshuo Chen · Bo Dai · Tuo Zhao · Hongyuan Zha · Wei Wei · Tomas Pfister -
2020 Spotlight: Algorithmic recourse under imperfect causal knowledge: a probabilistic approach »
Amir-Hossein Karimi · Julius von Kügelgen · Bernhard Schölkopf · Isabel Valera -
2020 Poster: How does This Interaction Affect Me? Interpretable Attribution for Feature Interactions »
Michael Tsang · Sirisha Rambhatla · Yan Liu -
2020 Poster: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Yingxiang Yang · Negar Kiyavash · Le Song · Niao He -
2020 Poster: Learning Strategic Network Emergence Games »
Rakshit Trivedi · Hongyuan Zha -
2020 Spotlight: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Yingxiang Yang · Negar Kiyavash · Le Song · Niao He -
2019 Workshop: Workshop on Human-Centric Machine Learning »
Plamen P Angelov · Nuria Oliver · Adrian Weller · Manuel Rodriguez · Isabel Valera · Silvia Chiappa · Hoda Heidari · Niki Kilbertus -
2019 Poster: Neural Similarity Learning »
Weiyang Liu · Zhen Liu · James Rehg · Le Song -
2019 Poster: Meta Architecture Search »
Albert Shaw · Wei Wei · Weiyang Liu · Le Song · Bo Dai -
2019 Poster: Exponential Family Estimation via Adversarial Dynamics Embedding »
Bo Dai · Zhen Liu · Hanjun Dai · Niao He · Arthur Gretton · Le Song · Dale Schuurmans -
2019 Poster: Retrosynthesis Prediction with Conditional Graph Logic Network »
Hanjun Dai · Chengtao Li · Connor Coley · Bo Dai · Le Song -
2019 Poster: Meta Learning with Relational Information for Short Sequences »
Yujia Xie · Haoming Jiang · Feng Liu · Tuo Zhao · Hongyuan Zha -
2018 : Manuel Gomez Rodriguez - Enhancing the Accuracy and Fairness of Human Decision Making »
Manuel Rodriguez -
2018 Poster: Learning Loop Invariants for Program Verification »
Xujie Si · Hanjun Dai · Mukund Raghothaman · Mayur Naik · Le Song -
2018 Spotlight: Learning Loop Invariants for Program Verification »
Xujie Si · Hanjun Dai · Mukund Raghothaman · Mayur Naik · Le Song -
2018 Poster: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Spotlight: Boosting Black Box Variational Inference »
Francesco Locatello · Gideon Dresdner · Rajiv Khanna · Isabel Valera · Gunnar Ratsch -
2018 Poster: Coupled Variational Bayes via Optimization Embedding »
Bo Dai · Hanjun Dai · Niao He · Weiyang Liu · Zhen Liu · Jianshu Chen · Lin Xiao · Le Song -
2018 Poster: Enhancing the Accuracy and Fairness of Human Decision Making »
Isabel Valera · Adish Singla · Manuel Gomez Rodriguez -
2018 Poster: Learning Temporal Point Processes via Reinforcement Learning »
Shuang Li · Shuai Xiao · Shixiang Zhu · Nan Du · Yao Xie · Le Song -
2018 Spotlight: Learning Temporal Point Processes via Reinforcement Learning »
Shuang Li · Shuai Xiao · Shixiang Zhu · Nan Du · Yao Xie · Le Song -
2018 Poster: Neural Interaction Transparency (NIT): Disentangling Learned Interactions for Improved Interpretability »
Michael Tsang · Hanpeng Liu · Sanjay Purushotham · Pavankumar Murali · Yan Liu -
2018 Poster: Learning towards Minimum Hyperspherical Energy »
Weiyang Liu · Rongmei Lin · Zhen Liu · Lixin Liu · Zhiding Yu · Bo Dai · Le Song -
2017 : Posters 1 »
J.P. Lewis · Housam Khalifa Bashier Babiker · Zhongang Qi · Laura Rieger · Ning Xie · Filip Dabek · Koushik Nagasubramanian · Bolei Zhou · Dieuwke Hupkes · CHUN-HAO CHANG · Pamela K Douglas · Enea Ceolini · Derek Doran · Yan Liu · Fuxin Li · Randolph Goebel -
2017 : Learning from Conditional Distributions via Dual Embeddings (poster). »
Le Song -
2017 Poster: From Parity to Preference-based Notions of Fairness in Classification »
Muhammad Bilal Zafar · Isabel Valera · Manuel Rodriguez · Krishna Gummadi · Adrian Weller -
2017 Poster: A Dirichlet Mixture Model of Hawkes Processes for Event Sequence Clustering »
Hongteng Xu · Hongyuan Zha -
2017 Poster: Predicting User Activity Level In Point Processes With Mass Transport Equation »
Yichen Wang · Xiaojing Ye · Hongyuan Zha · Le Song -
2017 Poster: Learning Combinatorial Optimization Algorithms over Graphs »
Elias Khalil · Hanjun Dai · Yuyu Zhang · Bistra Dilkina · Le Song -
2017 Spotlight: Learning Combinatorial Optimization Algorithms over Graphs »
Elias Khalil · Hanjun Dai · Yuyu Zhang · Bistra Dilkina · Le Song -
2017 Poster: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song -
2017 Poster: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2017 Spotlight: Deep Hyperspherical Learning »
Weiyang Liu · Yan-Ming Zhang · Xingguo Li · Zhiding Yu · Bo Dai · Tuo Zhao · Le Song -
2017 Spotlight: On the Complexity of Learning Neural Networks »
Le Song · Santosh Vempala · John Wilmes · Bo Xie -
2017 Poster: Wasserstein Learning of Deep Generative Point Process Models »
Shuai Xiao · Mehrdad Farajtabar · Xiaojing Ye · Junchi Yan · Xiaokang Yang · Le Song · Hongyuan Zha -
2016 Workshop: Learning with Tensors: Why Now and How? »
Anima Anandkumar · Rong Ge · Yan Liu · Maximilian Nickel · Qi (Rose) Yu -
2016 Poster: SPALS: Fast Alternating Least Squares via Implicit Leverage Scores Sampling »
Dehua Cheng · Richard Peng · Yan Liu · Kimis Perros -
2016 Poster: Learning Influence Functions from Incomplete Observations »
Xinran He · Ke Xu · David Kempe · Yan Liu -
2016 Poster: Multistage Campaigning in Social Networks »
Mehrdad Farajtabar · Xiaojing Ye · Sahar Harati · Le Song · Hongyuan Zha -
2016 Poster: Coevolutionary Latent Feature Processes for Continuous-Time User-Item Interactions »
Yichen Wang · Nan Du · Rakshit Trivedi · Le Song -
2015 Poster: Time-Sensitive Recommendation From Recurrent User Activities »
Nan Du · Yichen Wang · Niao He · Jimeng Sun · Le Song -
2015 Poster: Scale Up Nonlinear Component Analysis with Doubly Stochastic Gradients »
Bo Xie · Yingyu Liang · Le Song -
2015 Poster: Efficient Learning of Continuous-Time Hidden Markov Models for Disease Progression »
Yu-Ying Liu · Shuang Li · Fuxin Li · Le Song · James Rehg -
2015 Poster: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Oral: COEVOLVE: A Joint Point Process Model for Information Diffusion and Network Co-evolution »
Mehrdad Farajtabar · Yichen Wang · Manuel Rodriguez · Shuang Li · Hongyuan Zha · Le Song -
2015 Poster: M-Statistic for Kernel Change-Point Detection »
Shuang Li · Yao Xie · Hanjun Dai · Le Song -
2014 Poster: Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning »
Mohammad Taha Bahadori · Qi (Rose) Yu · Yan Liu -
2014 Poster: Active Learning and Best-Response Dynamics »
Maria-Florina F Balcan · Christopher Berlind · Avrim Blum · Emma Cohen · Kaushik Patnaik · Le Song -
2014 Spotlight: Fast Multivariate Spatio-temporal Analysis via Low Rank Tensor Learning »
Mohammad Taha Bahadori · Qi (Rose) Yu · Yan Liu -
2014 Poster: Learning Time-Varying Coverage Functions »
Nan Du · Yingyu Liang · Maria-Florina F Balcan · Le Song -
2014 Poster: Shaping Social Activity by Incentivizing Users »
Mehrdad Farajtabar · Nan Du · Manuel Gomez Rodriguez · Isabel Valera · Hongyuan Zha · Le Song -
2014 Poster: Scalable Kernel Methods via Doubly Stochastic Gradients »
Bo Dai · Bo Xie · Niao He · Yingyu Liang · Anant Raj · Maria-Florina F Balcan · Le Song -
2013 Poster: Robust Low Rank Kernel Embeddings of Multivariate Distributions »
Le Song · Bo Dai -
2013 Poster: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2013 Oral: Scalable Influence Estimation in Continuous-Time Diffusion Networks »
Nan Du · Le Song · Manuel Gomez Rodriguez · Hongyuan Zha -
2012 Workshop: Confluence between Kernel Methods and Graphical Models »
Le Song · Arthur Gretton · Alexander Smola -
2012 Workshop: Spectral Algorithms for Latent Variable Models »
Ankur P Parikh · Le Song · Eric Xing -
2012 Poster: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2012 Spotlight: Learning Networks of Heterogeneous Influence »
Nan Du · Le Song · Alexander Smola · Ming Yuan -
2009 Poster: Dirichlet-Bernoulli Alignment: A Generative Model for Multi-Class Multi-Label Multi-Instance Corpora »
Shuang Yang · Hongyuan Zha · Bao-Gang Hu -
2008 Poster: Convergence and Rate of Convergence of A Manifold-Based Dimension Reduction »
Andrew Smith · Xiaoming Huo · Hongyuan Zha -
2007 Poster: A General Boosting Method and its Application to Learning Ranking Functions for Web Search »
Zhaohui Zheng · Hongyuan Zha · Tong Zhang · Olivier Chapelle · Keke Chen · Gordon Sun