Timezone: »
Bayesian inference in state-space models is challenging due to high-dimensional state trajectories. A viable approach is particle Markov chain Monte Carlo (PMCMC), combining MCMC and sequential Monte Carlo to form ``exact approximations'' to otherwise-intractable MCMC methods. The performance of the approximation is limited to that of the exact method. We focus on particle Gibbs (PG) and particle Gibbs with ancestor sampling (PGAS), improving their performance beyond that of the ideal Gibbs sampler (which they approximate) by marginalizing out one or more parameters. This is possible when the parameter(s) has a conjugate prior relationship with the complete data likelihood. Marginalization yields a non-Markov model for inference, but we show that, in contrast to the general case, the methods still scale linearly in time. While marginalization can be cumbersome to implement, recent advances in probabilistic programming have enabled its automation. We demonstrate how the marginalized methods are viable as efficient inference backends in probabilistic programming, and demonstrate with examples in ecology and epidemiology.
Author Information
Anna Wigren (Uppsala University)
Riccardo Sven Risuleo (Uppsala University)
Lawrence Murray (Uber AI)
Fredrik Lindsten (Linköping University)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: Parameter elimination in particle Gibbs sampling »
Wed. Dec 11th 12:50 -- 01:05 AM Room West Ballroom C
More from the Same Authors
-
2022 : A Modelling Framework for Catalysing Progress in the Rod-Shaped Bacterial Cell Growth Discourse »
Shashi Nagarajan · Fredrik Lindsten -
2020 Poster: Markovian Score Climbing: Variational Inference with KL(p||q) »
Christian Naesseth · Fredrik Lindsten · David Blei -
2019 Poster: Calibration tests in multi-class classification: A unifying framework »
David Widmann · Fredrik Lindsten · Dave Zachariah -
2019 Spotlight: Calibration tests in multi-class classification: A unifying framework »
David Widmann · Fredrik Lindsten · Dave Zachariah -
2019 Poster: Pseudo-Extended Markov chain Monte Carlo »
Christopher Nemeth · Fredrik Lindsten · Maurizio Filippone · James Hensman