Timezone: »
Animals need to devise strategies to maximize returns while interacting with their environment based on incoming noisy sensory observations. Task-relevant states, such as the agent's location within an environment or the presence of a predator, are often not directly observable but must be inferred using available sensory information. Successor representations (SR) have been proposed as a middle-ground between model-based and model-free reinforcement learning strategies, allowing for fast value computation and rapid adaptation to changes in the reward function or goal locations. Indeed, recent studies suggest that features of neural responses are consistent with the SR framework. However, it is not clear how such representations might be learned and computed in partially observed, noisy environments. Here, we introduce a neurally plausible model using \emph{distributional successor features}, which builds on the distributed distributional code for the representation and computation of uncertainty, and which allows for efficient value function computation in partially observed environments via the successor representation. We show that distributional successor features can support reinforcement learning in noisy environments in which direct learning of successful policies is infeasible.
Author Information
Eszter Vértes (Gatsby Unit, UCL)
Maneesh Sahani (Gatsby Unit, UCL)
Related Events (a corresponding poster, oral, or spotlight)
-
2019 Oral: A neurally plausible model learns successor representations in partially observable environments »
Wed. Dec 11th 06:05 -- 06:20 PM Room West Exhibition Hall A
More from the Same Authors
-
2021 Spotlight: Probabilistic Tensor Decomposition of Neural Population Spiking Activity »
Hugo Soulat · Sepiedeh Keshavarzi · Troy Margrie · Maneesh Sahani -
2022 : Active Acquisition for Multimodal Temporal Data: A Challenging Decision-Making Task »
Jannik Kossen · Cătălina Cangea · Eszter Vértes · Andrew Jaegle · Viorica Patraucean · Ira Ktena · Nenad Tomasev · Danielle Belgrave -
2022 Poster: Structured Recognition for Generative Models with Explaining Away »
Changmin Yu · Hugo Soulat · Neil Burgess · Maneesh Sahani -
2021 Poster: Probabilistic Tensor Decomposition of Neural Population Spiking Activity »
Hugo Soulat · Sepiedeh Keshavarzi · Troy Margrie · Maneesh Sahani -
2020 Poster: Non-reversible Gaussian processes for identifying latent dynamical structure in neural data »
Virginia Rutten · Alberto Bernacchia · Maneesh Sahani · Guillaume Hennequin -
2020 Oral: Non-reversible Gaussian processes for identifying latent dynamical structure in neural data »
Virginia Rutten · Alberto Bernacchia · Maneesh Sahani · Guillaume Hennequin -
2020 Poster: Organizing recurrent network dynamics by task-computation to enable continual learning »
Lea Duncker · Laura N Driscoll · Krishna V Shenoy · Maneesh Sahani · David Sussillo -
2019 Poster: A neurally plausible model for online recognition and postdiction in a dynamical environment »
Li Kevin Wenliang · Maneesh Sahani -
2019 Poster: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2019 Oral: Kernel Instrumental Variable Regression »
Rahul Singh · Maneesh Sahani · Arthur Gretton -
2018 Poster: Flexible and accurate inference and learning for deep generative models »
Eszter Vértes · Maneesh Sahani -
2018 Poster: Temporal alignment and latent Gaussian process factor inference in population spike trains »
Lea Duncker · Maneesh Sahani -
2015 Poster: Bayesian Manifold Learning: The Locally Linear Latent Variable Model (LL-LVM) »
Mijung Park · Wittawat Jitkrittum · Ahmad Qamar · Zoltan Szabo · Lars Buesing · Maneesh Sahani -
2013 Workshop: Acquiring and Analyzing the Activity of Large Neural Ensembles »
Srinivas C Turaga · Lars Buesing · Maneesh Sahani · Jakob H Macke -
2013 Poster: Extracting regions of interest from biological images with convolutional sparse block coding »
Marius Pachitariu · Adam M Packer · Noah Pettit · Henry Dalgleish · Michael Hausser · Maneesh Sahani -
2013 Poster: Recurrent linear models of simultaneously-recorded neural populations »
Marius Pachitariu · Biljana Petreska · Maneesh Sahani -
2013 Spotlight: Recurrent linear models of simultaneously-recorded neural populations »
Marius Pachitariu · Biljana Petreska · Maneesh Sahani -
2012 Poster: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Oral: Spectral learning of linear dynamics from generalised-linear observations with application to neural population data »
Lars Buesing · Jakob H Macke · Maneesh Sahani -
2012 Poster: Learning visual motion in recurrent neural networks »
Marius Pachitariu · Maneesh Sahani -
2011 Oral: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Empirical models of spiking in neural populations »
Jakob H Macke · Lars Buesing · John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Dynamical segmentation of single trials from population neural data »
Biljana Petreska · Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2011 Poster: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2011 Spotlight: Probabilistic amplitude and frequency demodulation »
Richard Turner · Maneesh Sahani -
2010 Session: The Sam Roweis Symposium »
Maneesh Sahani -
2009 Poster: Occlusive Components Analysis »
Jörg Lücke · Richard Turner · Maneesh Sahani · Marc Henniges -
2008 Poster: Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity »
Byron M Yu · John P Cunningham · Gopal Santhanam · Stephen I Ryu · Krishna V Shenoy · Maneesh Sahani -
2007 Workshop: Beyond Simple Cells: Probabilistic Models for Visual Cortical Processing »
Richard Turner · Pietro Berkes · Maneesh Sahani -
2007 Oral: Inferring Elapsed Time from Stochastic Neural Processes »
Misha B Ahrens · Maneesh Sahani -
2007 Spotlight: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Neural Firing Rates from Spike Trains Using Gaussian Processes »
John P Cunningham · Byron M Yu · Krishna V Shenoy · Maneesh Sahani -
2007 Poster: Inferring Elapsed Time from Stochastic Neural Processes »
Misha B Ahrens · Maneesh Sahani -
2007 Poster: Modeling Natural Sounds with Modulation Cascade Processes »
Richard Turner · Maneesh Sahani -
2007 Poster: On Sparsity and Overcompleteness in Image Models »
Pietro Berkes · Richard Turner · Maneesh Sahani