Timezone: »
Poster
Private Hypothesis Selection
Mark Bun · Gautam Kamath · Thomas Steinke · Steven Wu
Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #90
We provide a differentially private algorithm for hypothesis selection.
Given samples from an unknown probability distribution $P$ and a set of $m$ probability distributions $\mathcal{H}$, the goal is to output, in a $\varepsilon$-differentially private manner, a distribution from $\mathcal{H}$ whose total variation distance to $P$ is comparable to that of the best such distribution (which we denote by $\alpha$).
The sample complexity of our basic algorithm is $O\left(\frac{\log m}{\alpha^2} + \frac{\log m}{\alpha \varepsilon}\right)$, representing a minimal cost for privacy when compared to the non-private algorithm. We also can handle infinite hypothesis classes $\mathcal{H}$ by relaxing to $(\varepsilon,\delta)$-differential privacy.
We apply our hypothesis selection algorithm to give learning algorithms for a number of natural distribution classes, including Gaussians, product distributions, sums of independent random variables, piecewise polynomials, and mixture classes.
Our hypothesis selection procedure allows us to generically convert a cover for a class to a learning algorithm, complementing known learning lower bounds which are in terms of the size of the packing number of the class.
As the covering and packing numbers are often closely related, for constant $\alpha$, our algorithms achieve the optimal sample complexity for many classes of interest.
Finally, we describe an application to private distribution-free PAC learning.
Author Information
Mark Bun (Boston University)
Gautam Kamath (University of Waterloo)
Thomas Steinke (IBM Almaden)
Steven Wu (University of Minnesota)
zstevenwu.com
More from the Same Authors
-
2022 : Choosing Public Datasets for Private Machine Learning via Gradient Subspace Distance »
Xin Gu · Gautam Kamath · Steven Wu -
2022 : Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2022 : Indiscriminate Data Poisoning Attacks on Neural Networks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 : Indiscriminate Data Poisoning Attacks on Neural Networks »
Yiwei Lu · Gautam Kamath · Yaoliang Yu -
2022 : Hidden Poison: Machine unlearning enables camouflaged poisoning attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2023 Poster: Privately Counting Unique Elements »
Thomas Steinke · Alexander Knop -
2023 Poster: Private Distribution Learning with Public Data: The View from Sample Compression »
Shai Ben-David · Alex Bie · Clément L Canonne · Gautam Kamath · Vikrant Singhal -
2023 Poster: Faster Differentially Private Convex Optimization via Second-Order Methods »
Arun Ganesh · Mahdi Haghifam · Thomas Steinke · Abhradeep Guha Thakurta -
2023 Poster: Privacy Auditing with One (1) Training Run »
Thomas Steinke · Milad Nasr · Matthew Jagielski -
2023 Poster: Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks »
Jimmy Di · Jack Douglas · Jayadev Acharya · Gautam Kamath · Ayush Sekhari -
2023 Poster: Distribution Learnability and Robustness »
Shai Ben-David · Alex Bie · Gautam Kamath · Tosca Lechner -
2023 Oral: Privacy Auditing with One (1) Training Run »
Thomas Steinke · Milad Nasr · Matthew Jagielski -
2022 : Private GANs, Revisited »
Alex Bie · Gautam Kamath · Guojun Zhang -
2022 Poster: New Lower Bounds for Private Estimation and a Generalized Fingerprinting Lemma »
Gautam Kamath · Argyris Mouzakis · Vikrant Singhal -
2022 Poster: Private Estimation with Public Data »
Alex Bie · Gautam Kamath · Vikrant Singhal -
2021 Poster: Privately Learning Subspaces »
Vikrant Singhal · Thomas Steinke -
2021 Poster: Enabling Fast Differentially Private SGD via Just-in-Time Compilation and Vectorization »
Pranav Subramani · Nicholas Vadivelu · Gautam Kamath -
2021 Poster: Remember What You Want to Forget: Algorithms for Machine Unlearning »
Ayush Sekhari · Jayadev Acharya · Gautam Kamath · Ananda Theertha Suresh -
2020 Poster: The Discrete Gaussian for Differential Privacy »
Clément L Canonne · Gautam Kamath · Thomas Steinke -
2020 Social: Data Privacy: Academia, Industry, Policy, and Society »
Gautam Kamath -
2020 Poster: CoinPress: Practical Private Mean and Covariance Estimation »
Sourav Biswas · Yihe Dong · Gautam Kamath · Jonathan Ullman -
2020 Poster: Private Identity Testing for High-Dimensional Distributions »
Clément L Canonne · Gautam Kamath · Audra McMillan · Jonathan Ullman · Lydia Zakynthinou -
2020 Spotlight: Private Identity Testing for High-Dimensional Distributions »
Clément L Canonne · Gautam Kamath · Audra McMillan · Jonathan Ullman · Lydia Zakynthinou -
2019 Poster: Equal Opportunity in Online Classification with Partial Feedback »
Yahav Bechavod · Katrina Ligett · Aaron Roth · Bo Waggoner · Steven Wu -
2019 Poster: Random Quadratic Forms with Dependence: Applications to Restricted Isometry and Beyond »
Arindam Banerjee · Qilong Gu · Vidyashankar Sivakumar · Steven Wu -
2019 Poster: Differentially Private Algorithms for Learning Mixtures of Separated Gaussians »
Gautam Kamath · Or Sheffet · Vikrant Singhal · Jonathan Ullman -
2019 Poster: Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation »
Mark Bun · Thomas Steinke -
2019 Poster: Locally Private Gaussian Estimation »
Matthew Joseph · Janardhan Kulkarni · Jieming Mao · Steven Wu -
2017 : Spotlights »
Antti Kangasrääsiö · Richard Everett · Yitao Liang · Yang Cai · Steven Wu · Vidya Muthukumar · Sven Schmit -
2017 Poster: Accuracy First: Selecting a Differential Privacy Level for Accuracy Constrained ERM »
Katrina Ligett · Seth Neel · Aaron Roth · Bo Waggoner · Steven Wu -
2017 Poster: Concentration of Multilinear Functions of the Ising Model with Applications to Network Data »
Constantinos Daskalakis · Nishanth Dikkala · Gautam Kamath -
2016 Poster: Learning from Rational Behavior: Predicting Solutions to Unknown Linear Programs »
Shahin Jabbari · Ryan Rogers · Aaron Roth · Steven Wu -
2015 Poster: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath -
2015 Spotlight: Optimal Testing for Properties of Distributions »
Jayadev Acharya · Constantinos Daskalakis · Gautam Kamath