Timezone: »
Poster
Provable Gradient Variance Guarantees for Black-Box Variational Inference
Justin Domke
Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #189
Recent variational inference methods use stochastic gradient estimators whose variance is not well understood. Theoretical guarantees for these estimators are important to understand when these methods will or will not work. This paper gives bounds for the common “reparameterization” estimators when the target is smooth and the variational family is a location-scale distribution. These bounds are unimprovable and thus provide the best possible guarantees under the stated assumptions.
Author Information
Justin Domke (University of Massachusetts, Amherst)
More from the Same Authors
-
2023 Poster: Provable convergence guarantees for black-box variational inference »
Justin Domke · Robert Gower · Guillaume Garrigos -
2023 Poster: Discriminative Calibration »
Yuling Yao · Justin Domke -
2021 Poster: MCMC Variational Inference via Uncorrected Hamiltonian Annealing »
Tomas Geffner · Justin Domke -
2021 Poster: Amortized Variational Inference for Simple Hierarchical Models »
Abhinav Agrawal · Justin Domke -
2020 Poster: Advances in Black-Box VI: Normalizing Flows, Importance Weighting, and Optimization »
Abhinav Agrawal · Daniel Sheldon · Justin Domke -
2020 Poster: Approximation Based Variance Reduction for Reparameterization Gradients »
Tomas Geffner · Justin Domke -
2019 Poster: Thompson Sampling and Approximate Inference »
My Phan · Yasin Abbasi Yadkori · Justin Domke -
2019 Poster: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2019 Spotlight: Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation »
Justin Domke · Daniel Sheldon -
2018 Poster: Using Large Ensembles of Control Variates for Variational Inference »
Tomas Geffner · Justin Domke -
2018 Poster: Importance Weighting and Variational Inference »
Justin Domke · Daniel Sheldon