Timezone: »
Poster
A Primal-Dual link between GANs and Autoencoders
Hisham Husain · Richard Nock · Robert Williamson
Tue Dec 10 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #118
Since the introduction of Generative Adversarial Networks (GANs) and Variational Autoencoders (VAE), the literature on generative modelling has witnessed an overwhelming resurgence. The impressive, yet elusive empirical performance of GANs has lead to the rise of many GAN-VAE hybrids, with the hopes of GAN level performance and additional benefits of VAE, such as an encoder for feature reduction, which is not offered by GANs. Recently, the Wasserstein Autoencoder (WAE) was proposed, achieving performance similar to that of GANs, yet it is still unclear whether the two are fundamentally different or can be further improved into a unified model. In this work, we study the $f$-GAN and WAE models and make two main discoveries. First, we find that the $f$-GAN and WAE objectives partake in a primal-dual relationship and are equivalent under some assumptions, which then allows us to explicate the success of WAE. Second, the equivalence result allows us to, for the first time, prove generalization bounds for Autoencoder models, which is a pertinent problem when it comes to theoretical analyses of generative models. Furthermore, we show that the WAE objective is related to other statistical quantities such as the $f$-divergence and in particular, upper bounded by the Wasserstein distance, which then allows us to tap into existing efficient (regularized) optimal transport solvers. Our findings thus present the first primal-dual relationship between GANs and Autoencoder models, comment on generalization abilities and make a step towards unifying these models.
Author Information
Hisham Husain (The Australian National University)
Richard Nock (Data61, the Australian National University and the University of Sydney)
Robert Williamson (Australian National University & Data61)
More from the Same Authors
-
2022 : Distributionally Robust Bayesian Optimization with φ-divergences »
Hisham Husain · Vu Nguyen · Anton van den Hengel -
2022 Poster: Fair Wrapping for Black-box Predictions »
Alexander Soen · Ibrahim Alabdulmohsin · Sanmi Koyejo · Yishay Mansour · Nyalleng Moorosi · Richard Nock · Ke Sun · Lexing Xie -
2020 Poster: Distributional Robustness with IPMs and links to Regularization and GANs »
Hisham Husain -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: Disentangled behavioural representations »
Amir Dezfouli · Hassan Ashtiani · Omar Ghattas · Richard Nock · Peter Dayan · Cheng Soon Ong -
2018 Poster: Representation Learning of Compositional Data »
Marta Avalos · Richard Nock · Cheng Soon Ong · Julien Rouar · Ke Sun -
2018 Poster: A loss framework for calibrated anomaly detection »
Aditya Menon · Robert Williamson -
2018 Poster: Constant Regret, Generalized Mixability, and Mirror Descent »
Zakaria Mhammedi · Robert Williamson -
2018 Spotlight: Constant Regret, Generalized Mixability, and Mirror Descent »
Zakaria Mhammedi · Robert Williamson -
2018 Spotlight: A loss framework for calibrated anomaly detection »
Aditya Menon · Robert Williamson -
2017 Poster: f-GANs in an Information Geometric Nutshell »
Richard Nock · Zac Cranko · Aditya K Menon · Lizhen Qu · Robert Williamson -
2017 Spotlight: f-GANs in an Information Geometric Nutshell »
Richard Nock · Zac Cranko · Aditya K Menon · Lizhen Qu · Robert Williamson -
2016 Poster: A scaled Bregman theorem with applications »
Richard Nock · Aditya Menon · Cheng Soon Ong -
2016 Poster: On Regularizing Rademacher Observation Losses »
Richard Nock -
2015 Workshop: Learning and privacy with incomplete data and weak supervision »
Giorgio Patrini · Tony Jebara · Richard Nock · Dimitrios Kotzias · Felix Xinnan Yu -
2015 Poster: Learning with Symmetric Label Noise: The Importance of Being Unhinged »
Brendan van Rooyen · Aditya Menon · Robert Williamson -
2015 Spotlight: Learning with Symmetric Label Noise: The Importance of Being Unhinged »
Brendan van Rooyen · Aditya Menon · Robert Williamson -
2014 Poster: From Stochastic Mixability to Fast Rates »
Nishant Mehta · Robert Williamson -
2014 Poster: (Almost) No Label No Cry »
Giorgio Patrini · Richard Nock · Tiberio Caetano · Paul Rivera -
2014 Spotlight: (Almost) No Label No Cry »
Giorgio Patrini · Richard Nock · Tiberio Caetano · Paul Rivera -
2014 Oral: From Stochastic Mixability to Fast Rates »
Nishant Mehta · Robert Williamson -
2012 Poster: Mixability in Statistical Learning »
Tim van Erven · Peter Grünwald · Mark Reid · Robert Williamson -
2011 Workshop: Relations between machine learning problems - an approach to unify the field »
Robert Williamson · John Langford · Ulrike von Luxburg · Mark Reid · Jennifer Wortman Vaughan -
2011 Poster: Composite Multiclass Losses »
Elodie Vernet · Robert Williamson · Mark Reid -
2009 Workshop: Clustering: Science or art? Towards principled approaches »
Margareta Ackerman · Shai Ben-David · Avrim Blum · Isabelle Guyon · Ulrike von Luxburg · Robert Williamson · Reza Zadeh -
2008 Poster: On the Efficient Minimization of Classification Calibrated Surrogates »
Richard Nock · Frank NIELSEN -
2008 Spotlight: On the Efficient Minimization of Classification Calibrated Surrogates »
Richard Nock · Frank NIELSEN