Timezone: »
This paper focuses on two fundamental tasks of graph analysis: community detection and node representation learning, which capture the global and local structures of graphs respectively. In existing literature, these two tasks are usually independently studied while they are actually highly correlated. We propose a probabilistic generative model called vGraph to learn community membership and node representation collaboratively. Specifically, we assume that each node can be represented as a mixture of communities, and each community is defined as a multinomial distribution over nodes. Both the mixing coefficients and the community distribution are parameterized by the low-dimensional representations of the nodes and communities. We designed an effective variational inference algorithm for the optimization through backpropagation, which regularizes the community membership of neighboring nodes to be similar in the latent space. Experimental results on multiple real-world graphs show that vGraph is very effective in both community detection and node representation learning, outperforming many competitive baselines in both tasks. We show that the framework of vGraph is quite flexible and can be easily extended to detect hierarchical communities.
Author Information
Fan-Yun Sun (National Taiwan University)
Meng Qu (Mila)
Jordan Hoffmann (Harvard University/Mila)
Chin-Wei Huang (Mila)
Jian Tang (Mila)
More from the Same Authors
-
2021 : Physion: Evaluating Physical Prediction from Vision in Humans and Machines »
Daniel Bear · Elias Wang · Damian Mrowca · Felix Binder · Hsiao-Yu Tung · Pramod RT · Cameron Holdaway · Sirui Tao · Kevin Smith · Fan-Yun Sun · Fei-Fei Li · Nancy Kanwisher · Josh Tenenbaum · Dan Yamins · Judith Fan -
2021 Spotlight: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 Spotlight: A Variational Perspective on Diffusion-Based Generative Models and Score Matching »
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville -
2021 : Multi-task Learning with Domain Knowledge for Molecular Property Prediction »
Shengchao Liu · Meng Qu · Zuobai Zhang · Jian Tang -
2022 : GAUCHE: A Library for Gaussian Processes in Chemistry »
Ryan-Rhys Griffiths · Leo Klarner · Henry Moss · Aditya Ravuri · Sang Truong · Bojana Rankovic · Yuanqi Du · Arian Jamasb · Julius Schwartz · Austin Tripp · Gregory Kell · Anthony Bourached · Alex Chan · Jacob Moss · Chengzhi Guo · Alpha Lee · Philippe Schwaller · Jian Tang -
2022 Workshop: Temporal Graph Learning Workshop »
Reihaneh Rabbany · Jian Tang · Michael Bronstein · Shenyang Huang · Meng Qu · Kellin Pelrine · Jianan Zhao · Farimah Poursafaei · Aarash Feizi -
2022 Poster: Interaction Modeling with Multiplex Attention »
Fan-Yun Sun · Isaac Kauvar · Ruohan Zhang · Jiachen Li · Mykel J Kochenderfer · Jiajun Wu · Nick Haber -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 : AI X Molecule »
Jian Tang -
2021 : Multimodal Single-Cell Data Integration + Q&A »
Daniel Burkhardt · Smita Krishnaswamy · Malte Luecken · Debora Marks · Angela Pisco · Bastian Rieck · Jian Tang · Alexander Tong · Fabian Theis · Guy Wolf -
2021 Poster: Neural Algorithmic Reasoners are Implicit Planners »
Andreea-Ioana Deac · Petar Veličković · Ognjen Milinkovic · Pierre-Luc Bacon · Jian Tang · Mladen Nikolic -
2021 Poster: How to transfer algorithmic reasoning knowledge to learn new algorithms? »
Louis-Pascal Xhonneux · Andreea-Ioana Deac · Petar Veličković · Jian Tang -
2021 Poster: Neural Bellman-Ford Networks: A General Graph Neural Network Framework for Link Prediction »
Zhaocheng Zhu · Zuobai Zhang · Louis-Pascal Xhonneux · Jian Tang -
2021 Poster: A Variational Perspective on Diffusion-Based Generative Models and Score Matching »
Chin-Wei Huang · Jae Hyun Lim · Aaron Courville -
2021 Poster: Predicting Molecular Conformation via Dynamic Graph Score Matching »
Shitong Luo · Chence Shi · Minkai Xu · Jian Tang -
2021 Poster: Joint Modeling of Visual Objects and Relations for Scene Graph Generation »
Minghao Xu · Meng Qu · Bingbing Ni · Jian Tang -
2020 Poster: Graph Policy Network for Transferable Active Learning on Graphs »
Shengding Hu · Zheng Xiong · Meng Qu · Xingdi Yuan · Marc-Alexandre Côté · Zhiyuan Liu · Jian Tang -
2020 Poster: Towards Interpretable Natural Language Understanding with Explanations as Latent Variables »
Wangchunshu Zhou · Jinyi Hu · Hanlin Zhang · Xiaodan Liang · Maosong Sun · Chenyan Xiong · Jian Tang -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2019 Poster: Probabilistic Logic Neural Networks for Reasoning »
Meng Qu · Jian Tang -
2018 Poster: Improving Explorability in Variational Inference with Annealed Variational Objectives »
Chin-Wei Huang · Shawn Tan · Alexandre Lacoste · Aaron Courville