Timezone: »
Poster
Powerset Convolutional Neural Networks
Chris Wendler · Markus Püschel · Dan Alistarh
Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #148
We present a novel class of convolutional neural networks (CNNs) for set functions, i.e., data indexed with the powerset of a finite set. The convolutions are derived as linear, shift-equivariant functions for various notions of shifts on set functions. The framework is fundamentally different from graph convolutions based on the Laplacian, as it provides not one but several basic shifts, one for each element in the ground set. Prototypical experiments with several set function classification tasks on synthetic datasets and on datasets derived from real-world hypergraphs demonstrate the potential of our new powerset CNNs.
Author Information
Chris Wendler (ETH Zurich)
Markus Püschel (ETH Zurich)
Dan Alistarh (IST Austria & NeuralMagic)
More from the Same Authors
-
2021 : SSSE: Efficiently Erasing Samples from Trained Machine Learning Models »
Alexandra Peste · Dan Alistarh · Christoph Lampert -
2021 Poster: M-FAC: Efficient Matrix-Free Approximations of Second-Order Information »
Elias Frantar · Eldar Kurtic · Dan Alistarh -
2021 Poster: Distributed Principal Component Analysis with Limited Communication »
Foivos Alimisis · Peter Davies · Bart Vandereycken · Dan Alistarh -
2021 Poster: Towards Tight Communication Lower Bounds for Distributed Optimisation »
Janne H. Korhonen · Dan Alistarh -
2021 Poster: Asynchronous Decentralized SGD with Quantized and Local Updates »
Giorgi Nadiradze · Amirmojtaba Sabour · Peter Davies · Shigang Li · Dan Alistarh -
2021 Poster: AC/DC: Alternating Compressed/DeCompressed Training of Deep Neural Networks »
Alexandra Peste · Eugenia Iofinova · Adrian Vladu · Dan Alistarh -
2019 Poster: Beyond the Single Neuron Convex Barrier for Neural Network Certification »
Gagandeep Singh · Rupanshu Ganvir · Markus Püschel · Martin Vechev -
2018 Poster: Fast and Effective Robustness Certification »
Gagandeep Singh · Timon Gehr · Matthew Mirman · Markus Püschel · Martin Vechev -
2017 Poster: QSGD: Communication-Efficient SGD via Gradient Quantization and Encoding »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic -
2017 Spotlight: Communication-Efficient Stochastic Gradient Descent, with Applications to Neural Networks »
Dan Alistarh · Demjan Grubic · Jerry Li · Ryota Tomioka · Milan Vojnovic