Timezone: »
In classic fair division problems such as cake cutting and rent division, envy-freeness requires that each individual (weakly) prefer his allocation to anyone else's. On a conceptual level, we argue that envy-freeness also provides a compelling notion of fairness for classification tasks, especially when individuals have heterogeneous preferences. Our technical focus is the generalizability of envy-free classification, i.e., understanding whether a classifier that is envy free on a sample would be almost envy free with respect to the underlying distribution with high probability. Our main result establishes that a small sample is sufficient to achieve such guarantees, when the classifier in question is a mixture of deterministic classifiers that belong to a family of low Natarajan dimension.
Author Information
Maria-Florina Balcan (Carnegie Mellon University)
Travis Dick (TTIC)
Ritesh Noothigattu (Carnegie Mellon University)
Ariel Procaccia (Harvard University)
More from the Same Authors
-
2021 Spotlight: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Structural Analysis of Branch-and-Cut and the Learnability of Gomory Mixed Integer Cuts »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2022 Poster: Provably tuning the ElasticNet across instances »
Maria-Florina Balcan · Misha Khodak · Dravyansh Sharma · Ameet Talwalkar -
2022 Poster: Maximizing Revenue under Market Shrinkage and Market Uncertainty »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm -
2022 Poster: Learning Predictions for Algorithms with Predictions »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar · Sergei Vassilvitskii -
2021 : Invited Talk: Ariel Procaccia (Harvard University) on Democracy and the Pursuit of Randomness »
Ariel Procaccia -
2021 Poster: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2021 Poster: Federated Hyperparameter Tuning: Challenges, Baselines, and Connections to Weight-Sharing »
Mikhail Khodak · Renbo Tu · Tian Li · Liam Li · Maria-Florina Balcan · Virginia Smith · Ameet Talwalkar -
2021 Poster: Sample Complexity of Tree Search Configuration: Cutting Planes and Beyond »
Maria-Florina Balcan · Siddharth Prasad · Tuomas Sandholm · Ellen Vitercik -
2021 Poster: Learning-to-learn non-convex piecewise-Lipschitz functions »
Maria-Florina Balcan · Mikhail Khodak · Dravyansh Sharma · Ameet Talwalkar -
2021 Oral: Data driven semi-supervised learning »
Maria-Florina Balcan · Dravyansh Sharma -
2020 Poster: Explainable Voting »
Dominik Peters · Ariel Procaccia · Alexandros Psomas · Zixin Zhou -
2020 Poster: Axioms for Learning from Pairwise Comparisons »
Ritesh Noothigattu · Dominik Peters · Ariel Procaccia -
2020 Poster: Neutralizing Self-Selection Bias in Sampling for Sortition »
Bailey Flanigan · Paul Gölz · Anupam Gupta · Ariel Procaccia -
2019 Poster: Differentially Private Covariance Estimation »
Kareem Amin · Travis Dick · Alex Kulesza · Andres Munoz Medina · Sergei Vassilvitskii -
2019 Poster: Paradoxes in Fair Machine Learning »
Paul Gölz · Anson Kahng · Ariel Procaccia -
2019 Poster: Efficient and Thrifty Voting by Any Means Necessary »
Debmalya Mandal · Ariel Procaccia · Nisarg Shah · David Woodruff -
2019 Poster: Adaptive Gradient-Based Meta-Learning Methods »
Misha Khodak · Maria-Florina Balcan · Ameet Talwalkar -
2018 : Poster Session »
Phillipp Schoppmann · Patrick Yu · Valerie Chen · Travis Dick · Marc Joye · Ningshan Zhang · Frederik Harder · Olli Saarikivi · Théo Ryffel · Yunhui Long · Théo JOURDAN · Di Wang · Antonio Marcedone · Negev Shekel Nosatzki · Yatharth A Dubey · Antti Koskela · Peter Bloem · Aleksandra Korolova · Martin Bertran · Hao Chen · Galen Andrew · Natalia Martinez · Janardhan Kulkarni · Jonathan Passerat-Palmbach · Guillermo Sapiro · Amrita Roy Chowdhury -
2018 : Posters 1 »
Wei Wei · Flavio Calmon · Travis Dick · Leilani Gilpin · Maroussia Lévesque · Malek Ben Salem · Michael Wang · Jack Fitzsimons · Dimitri Semenovich · Linda Gu · Nathaniel Fruchter -
2018 Poster: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2018 Spotlight: Data-Driven Clustering via Parameterized Lloyd's Families »
Maria-Florina Balcan · Travis Dick · Colin White -
2017 : Invited Talk: Sample and Computationally Efficient Active Learning Algorithms »
Maria-Florina Balcan -
2017 Poster: Sample and Computationally Efficient Learning Algorithms under S-Concave Distributions »
Maria-Florina Balcan · Hongyang Zhang -
2016 Poster: Noise-Tolerant Life-Long Matrix Completion via Adaptive Sampling »
Maria-Florina Balcan · Hongyang Zhang -
2016 Poster: Sample Complexity of Automated Mechanism Design »
Maria-Florina Balcan · Tuomas Sandholm · Ellen Vitercik