Timezone: »
Blind image denoising is an important yet very challenging problem in computer vision due to the complicated acquisition process of real images. In this work we propose a new variational inference method, which integrates both noise estimation and image denoising into a unique Bayesian framework, for blind image denoising. Specifically, an approximate posterior, parameterized by deep neural networks, is presented by taking the intrinsic clean image and noise variances as latent variables conditioned on the input noisy image. This posterior provides explicit parametric forms for all its involved hyper-parameters, and thus can be easily implemented for blind image denoising with automatic noise estimation for the test noisy image. On one hand, as other data-driven deep learning methods, our method, namely variational denoising network (VDN), can perform denoising efficiently due to its explicit form of posterior expression. On the other hand, VDN inherits the advantages of traditional model-driven approaches, especially the good generalization capability of generative models. VDN has good interpretability and can be flexibly utilized to estimate and remove complicated non-i.i.d. noise collected in real scenarios. Comprehensive experiments are performed to substantiate the superiority of our method in blind image denoising.
Author Information
Zongsheng Yue (Xi'an Jiaotong University)
Hongwei Yong (The Hong Kong Polytechnic University)
Qian Zhao (Xi'an Jiaotong University)
Deyu Meng (Xi'an Jiaotong University)
Lei Zhang (The Hong Kong Polytechnic Univ)
More from the Same Authors
-
2022 Poster: Tensor Wheel Decomposition and Its Tensor Completion Application »
Zhong-Cheng Wu · Ting-Zhu Huang · Liang-Jian Deng · Hong-Xia Dou · Deyu Meng -
2023 Poster: Preconditioning Matters: Fast Global Convergence of Non-convex Matrix Factorization via Scaled Gradient Descent »
Xixi Jia · Hailin Wang · Jiangjun Peng · Xiangchu Feng · Deyu Meng -
2023 Poster: ResShift: Efficient Diffusion Model for Image Super-resolution by Residual Shifting »
Zongsheng Yue · Jianyi Wang · Chen Change Loy -
2023 Poster: Label-efficient Segmentation via Affinity Propagation »
Wentong Li · Yuqian Yuan · Song Wang · Wenyu Liu · Dongqi Tang · Jian liu · Jianke Zhu · Lei Zhang -
2022 Spotlight: Deep Fourier Up-Sampling »
man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Deep Fourier Up-Sampling »
man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li -
2019 Poster: Meta-Weight-Net: Learning an Explicit Mapping For Sample Weighting »
Jun Shu · Qi Xie · Lixuan Yi · Qian Zhao · Sanping Zhou · Zongben Xu · Deyu Meng -
2014 Poster: Projective dictionary pair learning for pattern classification »
Shuhang Gu · Lei Zhang · Wangmeng Zuo · Xiangchu Feng