Timezone: »
Current deep neural networks(DNNs) can easily overfit to biased training data with corrupted labels or class imbalance. Sample re-weighting strategy is commonly used to alleviate this issue by designing a weighting function mapping from training loss to sample weight, and then iterating between weight recalculating and classifier updating. Current approaches, however, need manually pre-specify the weighting function as well as its additional hyper-parameters. It makes them fairly hard to be generally applied in practice due to the significant variation of proper weighting schemes relying on the investigated problem and training data. To address this issue, we propose a method capable of adaptively learning an explicit weighting function directly from data. The weighting function is an MLP with one hidden layer, constituting a universal approximator to almost any continuous functions, making the method able to fit a wide range of weighting function forms including those assumed in conventional research. Guided by a small amount of unbiased meta-data, the parameters of the weighting function can be finely updated simultaneously with the learning process of the classifiers. Synthetic and real experiments substantiate the capability of our method for achieving proper weighting functions in class imbalance and noisy label cases, fully complying with the common settings in traditional methods, and more complicated scenarios beyond conventional cases. This naturally leads to its better accuracy than other state-of-the-art methods.
Author Information
Jun Shu (Xi'an Jiaotong University)
Qi Xie (Xi'an Jiaotong University)
Lixuan Yi (Xi'an Jiaotong University)
Qian Zhao (Xi'an Jiaotong University)
Sanping Zhou (Xi'an Jiaotong University)
Zongben Xu (Xi'an Jiaotong University)
Deyu Meng (Xi'an Jiaotong University)
More from the Same Authors
-
2022 Poster: Keypoint-Guided Optimal Transport with Applications in Heterogeneous Domain Adaptation »
Xiang Gu · Yucheng Yang · Wei Zeng · Jian Sun · Zongben Xu -
2022 Poster: Tensor Wheel Decomposition and Its Tensor Completion Application »
Zhong-Cheng Wu · Ting-Zhu Huang · Liang-Jian Deng · Hong-Xia Dou · Deyu Meng -
2023 Poster: Preconditioning Matters: Fast Global Convergence of Non-convex Matrix Factorization via Scaled Gradient Descent »
Xixi Jia · Hailin Wang · Jiangjun Peng · Xiangchu Feng · Deyu Meng -
2023 Poster: Optimal Transport-Guided Conditional Score-Based Diffusion Model »
Xiang Gu · Liwei Yang · Jian Sun · Zongben Xu -
2022 Spotlight: Deep Fourier Up-Sampling »
man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li -
2022 Spotlight: Keypoint-Guided Optimal Transport with Applications in Heterogeneous Domain Adaptation »
Xiang Gu · Yucheng Yang · Wei Zeng · Jian Sun · Zongben Xu -
2022 Spotlight: Lightning Talks 2B-1 »
Yehui Tang · Jian Wang · Zheng Chen · man zhou · Peng Gao · Chenyang Si · SHANGKUN SUN · Yixing Xu · Weihao Yu · Xinghao Chen · Kai Han · Hu Yu · Yulun Zhang · Chenhui Gou · Teli Ma · Yuanqi Chen · Yunhe Wang · Hongsheng Li · Jinjin Gu · Jianyuan Guo · Qiman Wu · Pan Zhou · Yu Zhu · Jie Huang · Chang Xu · Yichen Zhou · Haocheng Feng · Guodong Guo · yongbing zhang · Ziyi Lin · Feng Zhao · Ge Li · Junyu Han · Jinwei Gu · Jifeng Dai · Chao Xu · Xinchao Wang · Linghe Kong · Shuicheng Yan · Yu Qiao · Chen Change Loy · Xin Yuan · Errui Ding · Yunhe Wang · Deyu Meng · Jingdong Wang · Chongyi Li -
2022 Poster: Deep Fourier Up-Sampling »
man zhou · Hu Yu · Jie Huang · Feng Zhao · Jinwei Gu · Chen Change Loy · Deyu Meng · Chongyi Li -
2021 Poster: Adversarial Reweighting for Partial Domain Adaptation »
Xiang Gu · Xi Yu · Yan Yang · Jian Sun · Zongben Xu -
2019 Poster: Variational Denoising Network: Toward Blind Noise Modeling and Removal »
Zongsheng Yue · Hongwei Yong · Qian Zhao · Deyu Meng · Lei Zhang -
2016 Poster: Deep ADMM-Net for Compressive Sensing MRI »
Yan Yang · Jian Sun · Huibin Li · Zongben Xu