Timezone: »
Poster
Gradient Information for Representation and Modeling
Jie Ding · Robert Calderbank · Vahid Tarokh
Thu Dec 12 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #238
Motivated by Fisher divergence, in this paper we present a new set of information quantities which we refer to as gradient information. These measures serve as surrogates for classical information measures such as those based on logarithmic loss, Kullback-Leibler divergence, directed Shannon information, etc. in many data-processing scenarios of interest, and often provide significant computational advantage, improved stability and robustness. As an example, we apply these measures to the Chow-Liu tree algorithm, and demonstrate remarkable performance and significant computational reduction using both synthetic and real data.
Author Information
Jie Ding (University of Minnesota)
Robert Calderbank (Duke University)
Vahid Tarokh (Duke University)
More from the Same Authors
-
2021 : Benchmarking Data-driven Surrogate Simulators for Artificial Electromagnetic Materials »
Yang Deng · Juncheng Dong · Simiao Ren · Omar Khatib · Mohammadreza Soltani · Vahid Tarokh · Willie Padilla · Jordan Malof -
2022 : Building Large Machine Learning Models from Small Distributed Models: A Layer Matching Approach »
xinwei zhang · Bingqing Song · Mehrdad Honarkhah · Jie Ding · Mingyi Hong -
2022 : PerFedSI: A Framework for Personalized Federated Learning with Side Information »
Liam Collins · Enmao Diao · Tanya Roosta · Jie Ding · Tao Zhang -
2022 Spotlight: Self-Aware Personalized Federated Learning »
Huili Chen · Jie Ding · Eric W. Tramel · Shuang Wu · Anit Kumar Sahu · Salman Avestimehr · Tao Zhang -
2022 Poster: Self-Aware Personalized Federated Learning »
Huili Chen · Jie Ding · Eric W. Tramel · Shuang Wu · Anit Kumar Sahu · Salman Avestimehr · Tao Zhang -
2022 Poster: GAL: Gradient Assisted Learning for Decentralized Multi-Organization Collaborations »
Enmao Diao · Jie Ding · Vahid Tarokh -
2022 Poster: Inference and Sampling for Archimax Copulas »
Yuting Ng · Ali Hasan · Vahid Tarokh -
2022 Poster: SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with Alternate Training »
Enmao Diao · Jie Ding · Vahid Tarokh -
2020 Poster: Assisted Learning: A Framework for Multi-Organization Learning »
Xun Xian · Xinran Wang · Jie Ding · Reza Ghanadan -
2020 Spotlight: Assisted Learning: A Framework for Multi-Organization Learning »
Xun Xian · Xinran Wang · Jie Ding · Reza Ghanadan -
2019 Poster: SpiderBoost and Momentum: Faster Variance Reduction Algorithms »
Zhe Wang · Kaiyi Ji · Yi Zhou · Yingbin Liang · Vahid Tarokh -
2018 Poster: Learning Bounds for Greedy Approximation with Explicit Feature Maps from Multiple Kernels »
Shahin Shahrampour · Vahid Tarokh -
2015 Poster: Discriminative Robust Transformation Learning »
Jiaji Huang · Qiang Qiu · Guillermo Sapiro · Robert Calderbank -
2013 Poster: Designed Measurements for Vector Count Data »
Liming Wang · David Carlson · Miguel Rodrigues · David Wilcox · Robert Calderbank · Lawrence Carin