Timezone: »
SARAH and SPIDER are two recently developed stochastic variance-reduced algorithms, and SPIDER has been shown to achieve a near-optimal first-order oracle complexity in smooth nonconvex optimization. However, SPIDER uses an accuracy-dependent stepsize that slows down the convergence in practice, and cannot handle objective functions that involve nonsmooth regularizers. In this paper, we propose SpiderBoost as an improved scheme, which allows to use a much larger constant-level stepsize while maintaining the same near-optimal oracle complexity, and can be extended with proximal mapping to handle composite optimization (which is nonsmooth and nonconvex) with provable convergence guarantee. In particular, we show that proximal SpiderBoost achieves an oracle complexity of O(min{n^{1/2}\epsilon^{-2},\epsilon^{-3}}) in composite nonconvex optimization, improving the state-of-the-art result by a factor of O(min{n^{1/6},\epsilon^{-1/3}}). We further develop a novel momentum scheme to accelerate SpiderBoost for composite optimization, which achieves the near-optimal oracle complexity in theory and substantial improvement in experiments.
Author Information
Zhe Wang (Ohio State University)
Kaiyi Ji (The Ohio State University)
Yi Zhou (University of Utah)
Yingbin Liang (The Ohio State University)
Vahid Tarokh (Duke University)
More from the Same Authors
-
2021 Spotlight: Provably Faster Algorithms for Bilevel Optimization »
Junjie Yang · Kaiyi Ji · Yingbin Liang -
2021 : Benchmarking Data-driven Surrogate Simulators for Artificial Electromagnetic Materials »
Yang Deng · Juncheng Dong · Simiao Ren · Omar Khatib · Mohammadreza Soltani · Vahid Tarokh · Willie Padilla · Jordan Malof -
2022 Poster: Provable Generalization of Overparameterized Meta-learning Trained with SGD »
Yu Huang · Yingbin Liang · Longbo Huang -
2022 : Online Min-max Optimization: Nonconvexity, Nonstationarity, and Dynamic Regret »
Yu Huang · Yuan Cheng · Yingbin Liang · Longbo Huang -
2022 Spotlight: Will Bilevel Optimizers Benefit from Loops »
Kaiyi Ji · Mingrui Liu · Yingbin Liang · Lei Ying -
2022 Spotlight: Lightning Talks 3B-2 »
Yu Huang · Tero Karras · Maxim Kodryan · Shiau Hong Lim · Shudong Huang · Ziyu Wang · Siqiao Xue · ILYAS MALIK · Ekaterina Lobacheva · Miika Aittala · Hongjie Wu · Yuhao Zhou · Yingbin Liang · Xiaoming Shi · Jun Zhu · Maksim Nakhodnov · Timo Aila · Yazhou Ren · James Zhang · Longbo Huang · Dmitry Vetrov · Ivor Tsang · Hongyuan Mei · Samuli Laine · Zenglin Xu · Wentao Feng · Jiancheng Lv -
2022 Spotlight: Provable Generalization of Overparameterized Meta-learning Trained with SGD »
Yu Huang · Yingbin Liang · Longbo Huang -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: Provable Benefit of Multitask Representation Learning in Reinforcement Learning »
Yuan Cheng · Songtao Feng · Jing Yang · Hong Zhang · Yingbin Liang -
2022 Poster: GAL: Gradient Assisted Learning for Decentralized Multi-Organization Collaborations »
Enmao Diao · Jie Ding · Vahid Tarokh -
2022 Poster: A Unifying Framework of Off-Policy General Value Function Evaluation »
Tengyu Xu · Zhuoran Yang · Zhaoran Wang · Yingbin Liang -
2022 Poster: On the Convergence Theory for Hessian-Free Bilevel Algorithms »
Daouda Sow · Kaiyi Ji · Yingbin Liang -
2022 Poster: Inference and Sampling for Archimax Copulas »
Yuting Ng · Ali Hasan · Vahid Tarokh -
2022 Poster: Finding Correlated Equilibrium of Constrained Markov Game: A Primal-Dual Approach »
Ziyi Chen · Shaocong Ma · Yi Zhou -
2022 Poster: Provable Benefit of Multitask Representation Learning in Reinforcement Learning »
Yuan Cheng · Songtao Feng · Jing Yang · Hong Zhang · Yingbin Liang -
2022 Poster: SemiFL: Semi-Supervised Federated Learning for Unlabeled Clients with Alternate Training »
Enmao Diao · Jie Ding · Vahid Tarokh -
2022 Poster: Will Bilevel Optimizers Benefit from Loops »
Kaiyi Ji · Mingrui Liu · Yingbin Liang · Lei Ying -
2021 Poster: Faster Non-asymptotic Convergence for Double Q-learning »
Lin Zhao · Huaqing Xiong · Yingbin Liang -
2021 Poster: Provably Faster Algorithms for Bilevel Optimization »
Junjie Yang · Kaiyi Ji · Yingbin Liang -
2021 Poster: Non-Asymptotic Analysis for Two Time-scale TDC with General Smooth Function Approximation »
Yue Wang · Shaofeng Zou · Yi Zhou -
2020 Poster: A Statistical Mechanics Framework for Task-Agnostic Sample Design in Machine Learning »
Bhavya Kailkhura · Jayaraman Thiagarajan · Qunwei Li · Jize Zhang · Yi Zhou · Timo Bremer -
2020 Poster: Convergence of Meta-Learning with Task-Specific Adaptation over Partial Parameters »
Kaiyi Ji · Jason Lee · Yingbin Liang · H. Vincent Poor -
2020 Poster: Improving Sample Complexity Bounds for (Natural) Actor-Critic Algorithms »
Tengyu Xu · Zhe Wang · Yingbin Liang -
2020 Poster: Finite-Time Analysis for Double Q-learning »
Huaqing Xiong · Lin Zhao · Yingbin Liang · Wei Zhang -
2020 Spotlight: Finite-Time Analysis for Double Q-learning »
Huaqing Xiong · Lin Zhao · Yingbin Liang · Wei Zhang -
2020 Poster: Variance-Reduced Off-Policy TDC Learning: Non-Asymptotic Convergence Analysis »
Shaocong Ma · Yi Zhou · Shaofeng Zou -
2019 Poster: Gradient Information for Representation and Modeling »
Jie Ding · Robert Calderbank · Vahid Tarokh -
2019 Poster: Finite-Sample Analysis for SARSA with Linear Function Approximation »
Shaofeng Zou · Tengyu Xu · Yingbin Liang -
2019 Poster: Two Time-scale Off-Policy TD Learning: Non-asymptotic Analysis over Markovian Samples »
Tengyu Xu · Shaofeng Zou · Yingbin Liang -
2018 Poster: Convergence of Cubic Regularization for Nonconvex Optimization under KL Property »
Yi Zhou · Zhe Wang · Yingbin Liang -
2018 Poster: Learning Bounds for Greedy Approximation with Explicit Feature Maps from Multiple Kernels »
Shahin Shahrampour · Vahid Tarokh -
2018 Spotlight: Convergence of Cubic Regularization for Nonconvex Optimization under KL Property »
Yi Zhou · Zhe Wang · Yingbin Liang -
2018 Poster: Minimax Estimation of Neural Net Distance »
Kaiyi Ji · Yingbin Liang