Timezone: »
We extend conformal prediction methodology beyond the case of exchangeable data. In particular, we show that a weighted version of conformal prediction can be used to compute distribution-free prediction intervals for problems in which the test and training covariate distributions differ, but the likelihood ratio between the two distributions is known---or, in practice, can be estimated accurately from a set of unlabeled data (test covariate points). Our weighted extension of conformal prediction also applies more broadly, to settings in which the data satisfies a certain weighted notion of exchangeability. We discuss other potential applications of our new conformal methodology, including latent variable and missing data problems.
Author Information
Ryan Tibshirani (Carnegie Mellon University)
Rina Barber (University of Chicago)
Emmanuel Candes (Stanford University)
Aaditya Ramdas (CMU)
More from the Same Authors
-
2021 : Doubly robust confidence sequences »
Ian Waudby-Smith · David Arbour · Ritwik Sinha · Edward Kennedy · Aaditya Ramdas -
2023 Poster: Conformal Scorecasting: Anticipatory Uncertainty Quantification for Distribution Shift in Time Series »
Anastasios Angelopoulos · Ryan Tibshirani · Emmanuel Candes -
2023 Poster: Uncertainty Quantification over Graph with Conformalized Graph Neural Networks »
Kexin Huang · Ying Jin · Emmanuel Candes · Jure Leskovec -
2023 Poster: Sequential Predictive Two-Sample and Independence Testing »
Aleksandr Podkopaev · Aaditya Ramdas -
2023 Poster: An Efficient Doubly-Robust Test for the Kernel Treatment Effect »
Diego Martinez Taboada · Aaditya Ramdas · Edward Kennedy -
2023 Poster: Adaptive Privacy Composition for Accuracy-first Mechanisms »
Ryan Rogers · Gennady Samorodnitsk · Steven Wu · Aaditya Ramdas -
2023 Poster: Improved Self-Normalized Concentration in Hilbert Spaces: Sublinear Regret for GP-UCB »
Justin Whitehouse · Aaditya Ramdas · Steven Wu -
2023 Poster: Auditing Fairness by Betting »
Ben Chugg · Santiago Cortes-Gomez · Bryan Wilder · Aaditya Ramdas -
2023 Poster: Counterfactually Comparing Abstaining Classifiers »
Yo Joong Choe · Aditya Gangrade · Aaditya Ramdas -
2023 Poster: Conformalized matrix completion »
Yu Gui · Rina Barber · Cong Ma -
2022 Poster: Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints »
Justin Whitehouse · Aaditya Ramdas · Steven Wu · Ryan Rogers -
2022 Invited Talk: Conformal Prediction in 2022 »
Emmanuel Candes -
2022 Poster: A permutation-free kernel two-sample test »
Shubhanshu Shekhar · Ilmun Kim · Aaditya Ramdas -
2021 Oral: Adaptive Conformal Inference Under Distribution Shift »
Isaac Gibbs · Emmanuel Candes -
2021 Poster: Adaptive Conformal Inference Under Distribution Shift »
Isaac Gibbs · Emmanuel Candes -
2021 Poster: Distribution-free inference for regression: discrete, continuous, and in between »
Yonghoon Lee · Rina Barber -
2021 Poster: A unified framework for bandit multiple testing »
Ziyu Xu · Ruodu Wang · Aaditya Ramdas -
2020 Poster: Predictive inference is free with the jackknife+-after-bootstrap »
Byol Kim · Chen Xu · Rina Barber -
2020 Poster: Confidence sequences for sampling without replacement »
Ian Waudby-Smith · Aaditya Ramdas -
2020 Poster: Distribution-free binary classification: prediction sets, confidence intervals and calibration »
Chirag Gupta · Aleksandr Podkopaev · Aaditya Ramdas -
2020 Spotlight: Confidence sequences for sampling without replacement »
Ian Waudby-Smith · Aaditya Ramdas -
2020 Spotlight: Distribution-free binary classification: prediction sets, confidence intervals and calibration »
Chirag Gupta · Aleksandr Podkopaev · Aaditya Ramdas -
2020 Poster: Achieving Equalized Odds by Resampling Sensitive Attributes »
Yaniv Romano · Stephen Bates · Emmanuel Candes -
2020 Poster: Classification with Valid and Adaptive Coverage »
Yaniv Romano · Matteo Sesia · Emmanuel Candes -
2020 Spotlight: Classification with Valid and Adaptive Coverage »
Yaniv Romano · Matteo Sesia · Emmanuel Candes -
2019 Poster: Are sample means in multi-armed bandits positively or negatively biased? »
Jaehyeok Shin · Aaditya Ramdas · Alessandro Rinaldo -
2019 Spotlight: Are sample means in multi-armed bandits positively or negatively biased? »
Jaehyeok Shin · Aaditya Ramdas · Alessandro Rinaldo -
2019 Poster: Conformalized Quantile Regression »
Yaniv Romano · Evan Patterson · Emmanuel Candes -
2019 Poster: Kalman Filter, Sensor Fusion, and Constrained Regression: Equivalences and Insights »
Maria Jahja · David Farrow · Roni Rosenfeld · Ryan Tibshirani -
2019 Poster: ADDIS: an adaptive discarding algorithm for online FDR control with conservative nulls »
Jinjin Tian · Aaditya Ramdas -
2017 Poster: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: A Sharp Error Analysis for the Fused Lasso, with Application to Approximate Changepoint Screening »
Kevin Lin · James Sharpnack · Alessandro Rinaldo · Ryan Tibshirani -
2017 Oral: Online control of the false discovery rate with decaying memory »
Aaditya Ramdas · Fanny Yang · Martin Wainwright · Michael Jordan -
2017 Poster: Higher-Order Total Variation Classes on Grids: Minimax Theory and Trend Filtering Methods »
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · James Sharpnack · Ryan Tibshirani -
2017 Poster: A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control »
Fanny Yang · Aaditya Ramdas · Kevin Jamieson · Martin Wainwright -
2017 Spotlight: A framework for Multi-A(rmed)/B(andit) Testing with Online FDR Control »
Fanny Yang · Aaditya Ramdas · Kevin Jamieson · Martin Wainwright -
2017 Poster: Dykstra's Algorithm, ADMM, and Coordinate Descent: Connections, Insights, and Extensions »
Ryan Tibshirani -
2016 Workshop: Adaptive and Scalable Nonparametric Methods in Machine Learning »
Aaditya Ramdas · Arthur Gretton · Bharath Sriperumbudur · Han Liu · John Lafferty · Samory Kpotufe · Zoltán Szabó -
2016 Workshop: Adaptive Data Analysis »
Vitaly Feldman · Aaditya Ramdas · Aaron Roth · Adam Smith -
2016 Poster: The Multiple Quantile Graphical Model »
Alnur Ali · J. Zico Kolter · Ryan Tibshirani -
2016 Poster: Selective inference for group-sparse linear models »
Fan Yang · Rina Barber · Prateek Jain · John Lafferty -
2016 Poster: Total Variation Classes Beyond 1d: Minimax Rates, and the Limitations of Linear Smoothers »
Veeranjaneyulu Sadhanala · Yu-Xiang Wang · Ryan Tibshirani -
2015 Poster: Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems »
Yuxin Chen · Emmanuel Candes -
2015 Oral: Solving Random Quadratic Systems of Equations Is Nearly as Easy as Solving Linear Systems »
Yuxin Chen · Emmanuel Candes -
2015 Poster: Robust PCA with compressed data »
Wooseok Ha · Rina Barber -
2015 Poster: Fast Two-Sample Testing with Analytic Representations of Probability Measures »
Kacper P Chwialkowski · Aaditya Ramdas · Dino Sejdinovic · Arthur Gretton -
2014 Workshop: Modern Nonparametrics 3: Automating the Learning Pipeline »
Eric Xing · Mladen Kolar · Arthur Gretton · Samory Kpotufe · Han Liu · Zoltán Szabó · Alan Yuille · Andrew G Wilson · Ryan Tibshirani · Sasha Rakhlin · Damian Kozbur · Bharath Sriperumbudur · David Lopez-Paz · Kirthevasan Kandasamy · Francesco Orabona · Andreas Damianou · Wacha Bounliphone · Yanshuai Cao · Arijit Das · Yingzhen Yang · Giulia DeSalvo · Dmitry Storcheus · Roberto Valerio -
2014 Workshop: OPT2014: Optimization for Machine Learning »
Zaid Harchaoui · Suvrit Sra · Alekh Agarwal · Martin Jaggi · Miro Dudik · Aaditya Ramdas · Jean Lasserre · Yoshua Bengio · Amir Beck -
2014 Poster: A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights »
Weijie Su · Stephen Boyd · Emmanuel Candes -
2014 Spotlight: A Differential Equation for Modeling Nesterov’s Accelerated Gradient Method: Theory and Insights »
Weijie Su · Stephen Boyd · Emmanuel Candes