Timezone: »
Assessing reliably the confidence of a deep neural net and predicting its failures is of primary importance for the practical deployment of these models. In this paper, we propose a new target criterion for model confidence, corresponding to the True Class Probability (TCP). We show how using the TCP is more suited than relying on the classic Maximum Class Probability (MCP). We provide in addition theoretical guarantees for TCP in the context of failure prediction. Since the true class is by essence unknown at test time, we propose to learn TCP criterion on the training set, introducing a specific learning scheme adapted to this context. Extensive experiments are conducted for validating the relevance of the proposed approach. We study various network architectures, small and large scale datasets for image classification and semantic segmentation. We show that our approach consistently outperforms several strong methods, from MCP to Bayesian uncertainty, as well as recent approaches specifically designed for failure prediction.
Author Information
Charles Corbière (Valeo.ai / CNAM)
Nicolas THOME (Cnam (Conservatoire national des arts et métiers))
Avner Bar-Hen (CNAM, Paris)
Matthieu Cord (Sorbonne University)
Patrick Pérez (Valeo.ai)
More from the Same Authors
-
2020 : Paper 16: Driving Behavior Explanation with Multi-level Fusion »
Matthieu Cord · Patrick Pérez -
2021 : Spherical Perspective on Learning with Normalization Layers »
Simon Roburin · Yann de Mont-Marin · Andrei Bursuc · Renaud Marlet · Patrick Pérez · Mathieu Aubry -
2021 : Spherical Perspective on Learning with Normalization Layers »
Simon Roburin · Yann de Mont-Marin · Andrei Bursuc · Renaud Marlet · Patrick Pérez · Mathieu Aubry -
2022 : Multi-Modal 3D GAN for Urban Scenes »
Loïck Chambon · Mickael Chen · Tuan-Hung VU · Alexandre Boulch · Andrei Bursuc · Matthieu Cord · Patrick Pérez -
2023 Poster: Resilient Multiple Choice Learning: A learned scoring scheme with application to audio scene analysis »
Victor Letzelter · Mathieu Fontaine · Patrick Pérez · Gaël Richard · Slim Essid · Mickael Chen -
2023 Poster: POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images »
Antonín Vobecký · Oriane Siméoni · David Hurych · Spyridon Gidaris · Andrei Bursuc · Patrick Pérez · Josef Sivic -
2021 Poster: Large-Scale Unsupervised Object Discovery »
Van Huy Vo · Elena Sizikova · Cordelia Schmid · Patrick Pérez · Jean Ponce -
2021 Poster: RED : Looking for Redundancies for Data-FreeStructured Compression of Deep Neural Networks »
Edouard YVINEC · Arnaud Dapogny · Matthieu Cord · Kevin Bailly -
2021 Poster: Robust and Decomposable Average Precision for Image Retrieval »
Elias Ramzi · Nicolas THOME · Clément Rambour · Nicolas Audebert · Xavier Bitot -
2021 Poster: Look at the Variance! Efficient Black-box Explanations with Sobol-based Sensitivity Analysis »
Thomas FEL · Remi Cadene · Mathieu Chalvidal · Matthieu Cord · David Vigouroux · Thomas Serre -
2020 : Q&A: Patrick Perez »
Patrick Pérez -
2020 : Invited Talk: Patrick Perez »
Patrick Pérez -
2020 Poster: Probabilistic Time Series Forecasting with Shape and Temporal Diversity »
Vincent LE GUEN · Nicolas THOME -
2019 Poster: Shape and Time Distortion Loss for Training Deep Time Series Forecasting Models »
Vincent LE GUEN · Nicolas THOME -
2019 Poster: RUBi: Reducing Unimodal Biases for Visual Question Answering »
Remi Cadene · Corentin Dancette · Hedi Ben younes · Matthieu Cord · Devi Parikh -
2019 Poster: Zero-Shot Semantic Segmentation »
Maxime Bucher · Tuan-Hung VU · Matthieu Cord · Patrick Pérez -
2019 Poster: Riemannian batch normalization for SPD neural networks »
Daniel Brooks · Olivier Schwander · Frederic Barbaresco · Jean-Yves Schneider · Matthieu Cord -
2018 Poster: Revisiting Multi-Task Learning with ROCK: a Deep Residual Auxiliary Block for Visual Detection »
Taylor Mordan · Nicolas THOME · Gilles Henaff · Matthieu Cord -
2013 Poster: Top-Down Regularization of Deep Belief Networks »
Hanlin Goh · Nicolas Thome · Matthieu Cord · Joo-Hwee Lim