Timezone: »
Often, a principal must make a decision based on data provided by an agent. Moreover, typically, that agent has an interest in the decision that is not perfectly aligned with that of the principal. Thus, the agent may have an incentive to select from or modify the samples he obtains before sending them to the principal. In other settings, the principal may not even be able to observe samples directly; instead, she must rely on signals that the agent is able to send based on the samples that he obtains, and he will choose these signals strategically.
In this paper, we give necessary and sufficient conditions for when the principal can distinguish between agents of good'' and
bad'' types, when the type affects the distribution of samples that the agent has access to. We also study the computational complexity of checking these conditions. Finally, we study how many samples are needed.
Author Information
Hanrui Zhang (Duke University)
Yu Cheng (Duke University)
Vincent Conitzer (Duke University)
Vincent Conitzer is the Kimberly J. Jenkins University Professor of New Technologies and Professor of Computer Science, Professor of Economics, and Professor of Philosophy at Duke University. He received Ph.D. (2006) and M.S. (2003) degrees in Computer Science from Carnegie Mellon University, and an A.B. (2001) degree in Applied Mathematics from Harvard University. Conitzer works on artificial intelligence (AI). Much of his work has focused on AI and game theory, for example designing algorithms for the optimal strategic placement of defensive resources. More recently, he has started to work on AI and ethics: how should we determine the objectives that AI systems pursue, when these objectives have complex effects on various stakeholders? Conitzer has received the Social Choice and Welfare Prize, a Presidential Early Career Award for Scientists and Engineers (PECASE), the IJCAI Computers and Thought Award, an NSF CAREER award, the inaugural Victor Lesser dissertation award, an honorable mention for the ACM dissertation award, and several awards for papers and service at the AAAI and AAMAS conferences. He has also been named a Guggenheim Fellow, a Sloan Fellow, a Kavli Fellow, a Bass Fellow, an ACM Fellow, a AAAI Fellow, and one of AI's Ten to Watch. He has served as program and/or general chair of the AAAI, AAMAS, AIES, COMSOC, and EC conferences. Conitzer and Preston McAfee were the founding Editors-in-Chief of the ACM Transactions on Economics and Computation (TEAC).
More from the Same Authors
-
2023 Poster: Computing Optimal Equilibria and Mechanisms via Learning in Zero-Sum Extensive-Form Games »
Brian Zhang · Gabriele Farina · Ioannis Anagnostides · Federico Cacciamani · Stephen McAleer · Andreas Haupt · Andrea Celli · Nicola Gatti · Vincent Conitzer · Tuomas Sandholm -
2023 Poster: Similarity-based cooperative equilibrium »
Caspar Oesterheld · Johannes Treutlein · Roger Grosse · Vincent Conitzer · Jakob Foerster -
2021 Poster: Automated Dynamic Mechanism Design »
Hanrui Zhang · Vincent Conitzer -
2021 Poster: Prior-independent Dynamic Auctions for a Value-maximizing Buyer »
Yuan Deng · Hanrui Zhang -
2020 Workshop: Cooperative AI »
Thore Graepel · Dario Amodei · Vincent Conitzer · Allan Dafoe · Gillian Hadfield · Eric Horvitz · Sarit Kraus · Kate Larson · Yoram Bachrach -
2020 Poster: Mitigating Manipulation in Peer Review via Randomized Reviewer Assignments »
Steven Jecmen · Hanrui Zhang · Ryan Liu · Nihar Shah · Vincent Conitzer · Fei Fang -
2019 Poster: Provably Efficient Q-learning with Function Approximation via Distribution Shift Error Checking Oracle »
Simon Du · Yuping Luo · Ruosong Wang · Hanrui Zhang -
2014 Tutorial: Computing Game-Theoretic Solutions »
Vincent Conitzer