Timezone: »
Dancing to music is an instinctive move by humans. Learning to model the music-to-dance generation process is, however, a challenging problem. It requires significant efforts to measure the correlation between music and dance as one needs to simultaneously consider multiple aspects, such as style and beat of both music and dance. Additionally, dance is inherently multimodal and various following movements of a pose at any moment are equally likely. In this paper, we propose a synthesis-by-analysis learning framework to generate dance from music. In the top-down analysis phase, we decompose a dance into a series of basic dance units, through which the model learns how to move. In the bottom-up synthesis phase, the model learns how to compose a dance by combining multiple basic dancing movements seamlessly according to input music. Experimental qualitative and quantitative results demonstrate that the proposed method can synthesize realistic, diverse, style-consistent, and beat-matching dances from music.
Author Information
Hsin-Ying Lee (University of California, Merced)
Xiaodong Yang (QCraft)
Ming-Yu Liu (Nvidia Research)
Ting-Chun Wang (NVIDIA)
Yu-Ding Lu (UC Merced)
Ming-Hsuan Yang (Google / UC Merced)
Jan Kautz (NVIDIA)
More from the Same Authors
-
2020 Poster: NVAE: A Deep Hierarchical Variational Autoencoder »
Arash Vahdat · Jan Kautz -
2020 Spotlight: NVAE: A Deep Hierarchical Variational Autoencoder »
Arash Vahdat · Jan Kautz -
2020 Poster: Online Adaptation for Consistent Mesh Reconstruction in the Wild »
Xueting Li · Sifei Liu · Shalini De Mello · Kihwan Kim · Xiaolong Wang · Ming-Hsuan Yang · Jan Kautz -
2020 Poster: Convolutional Tensor-Train LSTM for Spatio-Temporal Learning »
Jiahao Su · Wonmin Byeon · Jean Kossaifi · Furong Huang · Jan Kautz · Anima Anandkumar -
2020 Poster: On the distance between two neural networks and the stability of learning »
Jeremy Bernstein · Arash Vahdat · Yisong Yue · Ming-Yu Liu -
2019 Poster: Quadratic Video Interpolation »
Xiangyu Xu · Li Siyao · Wenxiu Sun · Qian Yin · Ming-Hsuan Yang -
2019 Spotlight: Quadratic Video Interpolation »
Xiangyu Xu · Li Siyao · Wenxiu Sun · Qian Yin · Ming-Hsuan Yang -
2019 Poster: Few-shot Video-to-Video Synthesis »
Ting-Chun Wang · Ming-Yu Liu · Andrew Tao · Guilin Liu · Bryan Catanzaro · Jan Kautz -
2019 Poster: Joint-task Self-supervised Learning for Temporal Correspondence »
Xueting Li · Sifei Liu · Shalini De Mello · Xiaolong Wang · Jan Kautz · Ming-Hsuan Yang -
2018 Poster: Deep Non-Blind Deconvolution via Generalized Low-Rank Approximation »
Wenqi Ren · Jiawei Zhang · Lin Ma · Jinshan Pan · Xiaochun Cao · Wangmeng Zuo · Wei Liu · Ming-Hsuan Yang -
2018 Poster: Context-aware Synthesis and Placement of Object Instances »
Donghoon Lee · Sifei Liu · Jinwei Gu · Ming-Yu Liu · Ming-Hsuan Yang · Jan Kautz -
2018 Poster: Video-to-Video Synthesis »
Ting-Chun Wang · Ming-Yu Liu · Jun-Yan Zhu · Guilin Liu · Andrew Tao · Jan Kautz · Bryan Catanzaro -
2018 Poster: Deep Attentive Tracking via Reciprocative Learning »
Shi Pu · YIBING SONG · Chao Ma · Honggang Zhang · Ming-Hsuan Yang -
2017 Poster: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Spotlight: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Poster: Learning Affinity via Spatial Propagation Networks »
Sifei Liu · Shalini De Mello · Jinwei Gu · Guangyu Zhong · Ming-Hsuan Yang · Jan Kautz -
2017 Poster: Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks »
Wei-Sheng Lai · Jia-Bin Huang · Ming-Hsuan Yang -
2017 Poster: Universal Style Transfer via Feature Transforms »
Yijun Li · Chen Fang · Jimei Yang · Zhaowen Wang · Xin Lu · Ming-Hsuan Yang -
2015 Poster: Weakly-supervised Disentangling with Recurrent Transformations for 3D View Synthesis »
Jimei Yang · Scott E Reed · Ming-Hsuan Yang · Honglak Lee