Timezone: »
We propose a new family of efficient and expressive deep generative models of graphs, called Graph Recurrent Attention Networks (GRANs). Our model generates graphs one block of nodes and associated edges at a time. The block size and sampling stride allow us to trade off sample quality for efficiency. Compared to previous RNN-based graph generative models, our framework better captures the auto-regressive conditioning between the already-generated and to-be-generated parts of the graph using Graph Neural Networks (GNNs) with attention. This not only reduces the dependency on node ordering but also bypasses the long-term bottleneck caused by the sequential nature of RNNs. Moreover, we parameterize the output distribution per block using a mixture of Bernoulli, which captures the correlations among generated edges within the block. Finally, we propose to handle node orderings in generation by marginalizing over a family of canonical orderings. On standard benchmarks, we achieve state-of-the-art time efficiency and sample quality compared to previous models. Additionally, we show our model is capable of generating large graphs of up to 5K nodes with good quality. Our code is released at: \url{https://github.com/lrjconan/GRAN}.
Author Information
Renjie Liao (University of Toronto)
Yujia Li (DeepMind)
Yang Song (Stanford University)
Shenlong Wang (University of Toronto)
Will Hamilton (McGill)
David Duvenaud (University of Toronto)
David Duvenaud is an assistant professor in computer science at the University of Toronto. His research focuses on continuous-time models, latent-variable models, and deep learning. His postdoc was done at Harvard University, and his Ph.D. at the University of Cambridge. David also co-founded Invenia, an energy forecasting and trading company.
Raquel Urtasun (Uber ATG)
Richard Zemel (Vector Institute/University of Toronto)
More from the Same Authors
-
2021 Spotlight: Maximum Likelihood Training of Score-Based Diffusion Models »
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon -
2021 : Score-Based Generative Classifiers »
Roland S. Zimmermann · Lukas Schott · Yang Song · Benjamin Dunn · David Klindt -
2021 : Understanding Post-hoc Adaptation for Improving Subgroup Robustness »
David Madras · Richard Zemel -
2021 : Amortized Causal Discovery: Learning to Infer Causal Graphs from Time-Series Data »
Sindy Löwe · David Madras · Richard Zemel · Max Welling -
2021 : Score-Based Generative Classifiers »
Roland S. Zimmermann · Lukas Schott · Yang Song · Benjamin Dunn · David Klindt -
2022 : Keynote Talk 1 »
Yang Song -
2022 Workshop: The Symbiosis of Deep Learning and Differential Equations II »
Michael Poli · Winnie Xu · Estefany Kelly Buchanan · Maryam Hosseini · Luca Celotti · Martin Magill · Ermal Rrapaj · Qiyao Wei · Stefano Massaroli · Patrick Kidger · Archis Joglekar · Animesh Garg · David Duvenaud -
2022 Workshop: NeurIPS 2022 Workshop on Score-Based Methods »
Yingzhen Li · Yang Song · Valentin De Bortoli · Francois-Xavier Briol · Wenbo Gong · Alexia Jolicoeur-Martineau · Arash Vahdat -
2022 Poster: Implications of Model Indeterminacy for Explanations of Automated Decisions »
Marc-Etienne Brunet · Ashton Anderson · Richard Zemel -
2022 Poster: Deep Ensembles Work, But Are They Necessary? »
Taiga Abe · Estefany Kelly Buchanan · Geoff Pleiss · Richard Zemel · John Cunningham -
2021 : Dependent Types for Machine Learning in Dex - David Duvenaud - University of Toronto »
David Duvenaud · AIPLANS 2021 -
2021 Poster: Meta-learning to Improve Pre-training »
Aniruddh Raghu · Jonathan Lorraine · Simon Kornblith · Matthew McDermott · David Duvenaud -
2021 Poster: Imitation with Neural Density Models »
Kuno Kim · Akshat Jindal · Yang Song · Jiaming Song · Yanan Sui · Stefano Ermon -
2021 : Invited talk - Raquel Urtasun »
Raquel Urtasun -
2021 Poster: Estimating High Order Gradients of the Data Distribution by Denoising »
Chenlin Meng · Yang Song · Wenzhe Li · Stefano Ermon -
2021 Poster: Maximum Likelihood Training of Score-Based Diffusion Models »
Yang Song · Conor Durkan · Iain Murray · Stefano Ermon -
2021 Poster: Pseudo-Spherical Contrastive Divergence »
Lantao Yu · Jiaming Song · Yang Song · Stefano Ermon -
2021 Poster: CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation »
Yusuke Tashiro · Jiaming Song · Yang Song · Stefano Ermon -
2021 Poster: Variational Model Inversion Attacks »
Kuan-Chieh Wang · YAN FU · Ke Li · Ashish Khisti · Richard Zemel · Alireza Makhzani -
2021 Poster: Identifying and Benchmarking Natural Out-of-Context Prediction Problems »
David Madras · Richard Zemel -
2020 : Panel discussion 2 »
Danielle S Bassett · Yoshua Bengio · Cristina Savin · David Duvenaud · Anna Choromanska · Yanping Huang -
2020 : Invited Talk David Duvenaud »
David Duvenaud -
2020 : Contributed talks 5: Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification »
Elliot Creager · David Madras · Richard Zemel -
2020 : Contributed Talk 4: Directional Graph Networks »
Dominique Beaini · Saro Passaro · Vincent Létourneau · Will Hamilton · Gabriele Corso · Pietro Liò -
2020 Workshop: Differential Geometry meets Deep Learning (DiffGeo4DL) »
Joey Bose · Emile Mathieu · Charline Le Lan · Ines Chami · Frederic Sala · Christopher De Sa · Maximilian Nickel · Christopher Ré · Will Hamilton -
2020 Poster: Improved Techniques for Training Score-Based Generative Models »
Yang Song · Stefano Ermon -
2020 Poster: Efficient Learning of Generative Models via Finite-Difference Score Matching »
Tianyu Pang · Kun Xu · Chongxuan LI · Yang Song · Stefano Ermon · Jun Zhu -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization Q&A »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2020 Poster: Adversarial Example Games »
Joey Bose · Gauthier Gidel · Hugo Berard · Andre Cianflone · Pascal Vincent · Simon Lacoste-Julien · Will Hamilton -
2020 Poster: What went wrong and when? Instance-wise feature importance for time-series black-box models »
Sana Tonekaboni · Shalmali Joshi · Kieran Campbell · David Duvenaud · Anna Goldenberg -
2020 Poster: Autoregressive Score Matching »
Chenlin Meng · Lantao Yu · Yang Song · Jiaming Song · Stefano Ermon -
2020 Poster: Learning Differential Equations that are Easy to Solve »
Jacob Kelly · Jesse Bettencourt · Matthew Johnson · David Duvenaud -
2020 Poster: Diversity can be Transferred: Output Diversification for White- and Black-box Attacks »
Yusuke Tashiro · Yang Song · Stefano Ermon -
2020 Poster: Learning Dynamic Belief Graphs to Generalize on Text-Based Games »
Ashutosh Adhikari · Xingdi Yuan · Marc-Alexandre Côté · Mikuláš Zelinka · Marc-Antoine Rondeau · Romain Laroche · Pascal Poupart · Jian Tang · Adam Trischler · Will Hamilton -
2020 Tutorial: (Track3) Deep Implicit Layers: Neural ODEs, Equilibrium Models, and Differentiable Optimization »
David Duvenaud · J. Zico Kolter · Matthew Johnson -
2019 : Invited Talk »
Raquel Urtasun -
2019 : Coffee Break & Poster Session 1 »
Yan Zhang · Jonathon Hare · Adam Prugel-Bennett · Po Leung · Patrick Flaherty · Pitchaya Wiratchotisatian · Alessandro Epasto · Silvio Lattanzi · Sergei Vassilvitskii · Morteza Zadimoghaddam · Theja Tulabandhula · Fabian Fuchs · Adam Kosiorek · Ingmar Posner · William Hang · Anna Goldie · Sujith Ravi · Azalia Mirhoseini · Yuwen Xiong · Mengye Ren · Renjie Liao · Raquel Urtasun · Haici Zhang · Michele Borassi · Shengda Luo · Andrew Trapp · Geoffroy Dubourg-Felonneau · Yasmeen Kussad · Christopher Bender · Manzil Zaheer · Junier Oliva · Michał Stypułkowski · Maciej Zieba · Austin Dill · Chun-Liang Li · Songwei Ge · Eunsu Kang · Oiwi Parker Jones · Kelvin Ka Wing Wong · Joshua Payne · Yang Li · Azade Nazi · Erkut Erdem · Aykut Erdem · Kevin O'Connor · Juan J Garcia · Maciej Zamorski · Jan Chorowski · Deeksha Sinha · Harry Clifford · John W Cassidy -
2019 Workshop: Program Transformations for ML »
Pascal Lamblin · Atilim Gunes Baydin · Alexander Wiltschko · Bart van Merriënboer · Emily Fertig · Barak Pearlmutter · David Duvenaud · Laurent Hascoet -
2019 : Molecules and Genomes »
David Haussler · Djork-Arné Clevert · Michael Keiser · Alan Aspuru-Guzik · David Duvenaud · David Jones · Jennifer Wei · Alexander D'Amour -
2019 : Opening remarks »
Will Hamilton -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković -
2019 Poster: Learning Transferable Graph Exploration »
Hanjun Dai · Yujia Li · Chenglong Wang · Rishabh Singh · Po-Sen Huang · Pushmeet Kohli -
2019 Poster: Incremental Few-Shot Learning with Attention Attractor Networks »
Mengye Ren · Renjie Liao · Ethan Fetaya · Richard Zemel -
2019 Poster: MintNet: Building Invertible Neural Networks with Masked Convolutions »
Yang Song · Chenlin Meng · Stefano Ermon -
2019 Poster: SMILe: Scalable Meta Inverse Reinforcement Learning through Context-Conditional Policies »
Kamyar Ghasemipour · Shixiang (Shane) Gu · Richard Zemel -
2019 Poster: Generative Modeling by Estimating Gradients of the Data Distribution »
Yang Song · Stefano Ermon -
2019 Poster: Latent Ordinary Differential Equations for Irregularly-Sampled Time Series »
Yulia Rubanova · Tian Qi Chen · David Duvenaud -
2019 Poster: Residual Flows for Invertible Generative Modeling »
Tian Qi Chen · Jens Behrmann · David Duvenaud · Joern-Henrik Jacobsen -
2019 Spotlight: Residual Flows for Invertible Generative Modeling »
Tian Qi Chen · Jens Behrmann · David Duvenaud · Joern-Henrik Jacobsen -
2019 Oral: Generative Modeling by Estimating Gradients of the Data Distribution »
Yang Song · Stefano Ermon -
2019 Poster: Neural Networks with Cheap Differential Operators »
Tian Qi Chen · David Duvenaud -
2019 Spotlight: Neural Networks with Cheap Differential Operators »
Tian Qi Chen · David Duvenaud -
2018 : Software Panel »
Ben Letham · David Duvenaud · Dustin Tran · Aki Vehtari -
2018 Poster: Learning Latent Subspaces in Variational Autoencoders »
Jack Klys · Jake Snell · Richard Zemel -
2018 Poster: Isolating Sources of Disentanglement in Variational Autoencoders »
Tian Qi Chen · Xuechen (Chen) Li · Roger Grosse · David Duvenaud -
2018 Oral: Isolating Sources of Disentanglement in Variational Autoencoders »
Tian Qi Chen · Xuechen (Chen) Li · Roger Grosse · David Duvenaud -
2018 Poster: Constructing Unrestricted Adversarial Examples with Generative Models »
Yang Song · Rui Shu · Nate Kushman · Stefano Ermon -
2018 Poster: Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer »
David Madras · Toni Pitassi · Richard Zemel -
2018 Poster: Neural Ordinary Differential Equations »
Tian Qi Chen · Yulia Rubanova · Jesse Bettencourt · David Duvenaud -
2018 Oral: Neural Ordinary Differential Equations »
Tian Qi Chen · Yulia Rubanova · Jesse Bettencourt · David Duvenaud -
2018 Poster: Neural Guided Constraint Logic Programming for Program Synthesis »
Lisa Zhang · Gregory Rosenblatt · Ethan Fetaya · Renjie Liao · William Byrd · Matthew Might · Raquel Urtasun · Richard Zemel -
2017 Workshop: Aligned Artificial Intelligence »
Dylan Hadfield-Menell · Jacob Steinhardt · David Duvenaud · David Krueger · Anca Dragan -
2017 : Automatic Chemical Design Using a Data-driven Continuous Representation of Molecules »
David Duvenaud -
2017 : Contributed talk: Predict Responsibly: Increasing Fairness by Learning To Defer Abstract »
David Madras · Richard Zemel · Toni Pitassi -
2017 : Poster Spotlights I »
Taesik Na · Yang Song · Aman Sinha · Richard Shin · Qiuyuan Huang · Nina Narodytska · Matt Staib · Kexin Pei · Fnu Suya · Amirata Ghorbani · Jacob Buckman · Matthias Hein · Huan Zhang · Yanjun Qi · Yuan Tian · Min Du · Dimitris Tsipras -
2017 Poster: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2017 Poster: Sticking the Landing: Simple, Lower-Variance Gradient Estimators for Variational Inference »
Geoffrey Roeder · Yuhuai Wu · David Duvenaud -
2017 Oral: Imagination-Augmented Agents for Deep Reinforcement Learning »
Sébastien Racanière · Theophane Weber · David Reichert · Lars Buesing · Arthur Guez · Danilo Jimenez Rezende · Adrià Puigdomènech Badia · Oriol Vinyals · Nicolas Heess · Yujia Li · Razvan Pascanu · Peter Battaglia · Demis Hassabis · David Silver · Daan Wierstra -
2017 Spotlight: Dualing GANs »
Yujia Li · Alex Schwing · Kuan-Chieh Wang · Richard Zemel -
2017 Poster: Few-Shot Learning Through an Information Retrieval Lens »
Eleni Triantafillou · Richard Zemel · Raquel Urtasun -
2017 Poster: Prototypical Networks for Few-shot Learning »
Jake Snell · Kevin Swersky · Richard Zemel -
2016 : Generating Class-conditional Images with Gradient-based Inference »
David Duvenaud -
2016 : David Duvenaud – No more mini-languages: The power of autodiffing full-featured Python »
David Duvenaud -
2016 Workshop: Reliable Machine Learning in the Wild »
Dylan Hadfield-Menell · Adrian Weller · David Duvenaud · Jacob Steinhardt · Percy Liang -
2016 Poster: Understanding the Effective Receptive Field in Deep Convolutional Neural Networks »
Wenjie Luo · Yujia Li · Raquel Urtasun · Richard Zemel -
2016 Poster: Learning Deep Parsimonious Representations »
Renjie Liao · Alex Schwing · Richard Zemel · Raquel Urtasun -
2016 Poster: Composing graphical models with neural networks for structured representations and fast inference »
Matthew Johnson · David Duvenaud · Alex Wiltschko · Ryan Adams · Sandeep R Datta -
2016 Poster: Probing the Compositionality of Intuitive Functions »
Eric Schulz · Josh Tenenbaum · David Duvenaud · Maarten Speekenbrink · Samuel J Gershman -
2015 : *David Duvenaud* Automatic Differentiation: The most criminally underused tool in probabilistic numerics »
David Duvenaud -
2015 Poster: Convolutional Networks on Graphs for Learning Molecular Fingerprints »
David Duvenaud · Dougal Maclaurin · Jorge Iparraguirre · Rafael Bombarell · Timothy Hirzel · Alan Aspuru-Guzik · Ryan Adams -
2015 Poster: Skip-Thought Vectors »
Jamie Kiros · Yukun Zhu · Russ Salakhutdinov · Richard Zemel · Raquel Urtasun · Antonio Torralba · Sanja Fidler -
2015 Poster: Exploring Models and Data for Image Question Answering »
Mengye Ren · Jamie Kiros · Richard Zemel -
2014 Workshop: Representation and Learning Methods for Complex Outputs »
Richard Zemel · Dale Schuurmans · Kilian Q Weinberger · Yuhong Guo · Jia Deng · Francesco Dinuzzo · Hal Daumé III · Honglak Lee · Noah A Smith · Richard Sutton · Jiaqian YU · Vitaly Kuznetsov · Luke Vilnis · Hanchen Xiong · Calvin Murdock · Thomas Unterthiner · Jean-Francis Roy · Martin Renqiang Min · Hichem SAHBI · Fabio Massimo Zanzotto -
2014 Poster: Probabilistic ODE Solvers with Runge-Kutta Means »
Michael Schober · David Duvenaud · Philipp Hennig -
2014 Oral: Probabilistic ODE Solvers with Runge-Kutta Means »
Michael Schober · David Duvenaud · Philipp Hennig -
2014 Poster: A Multiplicative Model for Learning Distributed Text-Based Attribute Representations »
Jamie Kiros · Richard Zemel · Russ Salakhutdinov -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser -
2013 Poster: A Determinantal Point Process Latent Variable Model for Inhibition in Neural Spiking Data »
Jasper Snoek · Richard Zemel · Ryan Adams -
2013 Poster: On the Expressive Power of Restricted Boltzmann Machines »
James Martens · Arkadev Chattopadhya · Toni Pitassi · Richard Zemel -
2012 Poster: Collaborative Ranking With 17 Parameters »
Maksims Volkovs · Richard Zemel -
2012 Poster: Bayesian n-Choose-k Models for Classification and Ranking »
Kevin Swersky · Danny Tarlow · Richard Zemel · Ryan Adams · Brendan J Frey -
2012 Poster: Active Learning of Model Evidence Using Bayesian Quadrature »
Michael A Osborne · David Duvenaud · Roman Garnett · Carl Edward Rasmussen · Stephen J Roberts · Zoubin Ghahramani -
2012 Poster: Efficient Sampling for Bipartite Matching Problems »
Maksims Volkovs · Richard Zemel -
2012 Poster: Cardinality Restricted Boltzmann Machines »
Kevin Swersky · Danny Tarlow · Ilya Sutskever · Richard Zemel · Russ Salakhutdinov · Ryan Adams -
2011 Poster: Additive Gaussian Processes »
David Duvenaud · Hannes Nickisch · Carl Edward Rasmussen -
2010 Talk: Opening Remarks and Awards »
Richard Zemel · Terrence Sejnowski · John Shawe-Taylor -
2009 Placeholder: Opening Remarks »
Richard Zemel -
2008 Poster: Comparing model predictions of response bias and variance in cue combination »
Rama Natarajan · Iain Murray · Ladan Shams · Richard Zemel -
2008 Poster: Learning Hybrid Models for Image Annotation with Partially Labeled Data »
Xuming He · Richard Zemel -
2008 Poster: Competing RBM density models for classification of fMRI images »
Tanya Schmah · Geoffrey E Hinton · Richard Zemel