Timezone: »
Layer normalization (LayerNorm) is a technique to normalize the distributions of intermediate layers. It enables smoother gradients, faster training, and better generalization accuracy. However, it is still unclear where the effectiveness stems from. In this paper, our main contribution is to take a step further in understanding LayerNorm. Many of previous studies believe that the success of LayerNorm comes from forward normalization. Unlike them, we find that the derivatives of the mean and variance are more important than forward normalization by re-centering and re-scaling backward gradients. Furthermore, we find that the parameters of LayerNorm, including the bias and gain, increase the risk of over-fitting and do not work in most cases. Experiments show that a simple version of LayerNorm (LayerNorm-simple) without the bias and gain outperforms LayerNorm on four datasets. It obtains the state-of-the-art performance on En-Vi machine translation. To address the over-fitting problem, we propose a new normalization method, Adaptive Normalization (AdaNorm), by replacing the bias and gain with a new transformation function. Experiments show that AdaNorm demonstrates better results than LayerNorm on seven out of eight datasets.
Author Information
Jingjing Xu (Peking University)
Xu Sun (Peking University)
Zhiyuan Zhang (Peking University)
Guangxiang Zhao (Peking University)
Junyang Lin (Alibaba Group)
More from the Same Authors
-
2022 : Gradient Knowledge Distillation for Pre-trained Language Models »
Lean Wang · Lei Li · Xu Sun -
2022 : Gradient Knowledge Distillation for Pre-trained Language Models »
Lean Wang · Lei Li · Xu Sun -
2022 Poster: Retrieve, Reason, and Refine: Generating Accurate and Faithful Patient Instructions »
Fenglin Liu · Bang Yang · Chenyu You · Xian Wu · Shen Ge · Zhangdaihong Liu · Xu Sun · Yang Yang · David Clifton -
2021 : Continual Learning in Large-Scale Pre-Training »
Xu Sun -
2021 Poster: CogView: Mastering Text-to-Image Generation via Transformers »
Ming Ding · Zhuoyi Yang · Wenyi Hong · Wendi Zheng · Chang Zhou · Da Yin · Junyang Lin · Xu Zou · Zhou Shao · Hongxia Yang · Jie Tang -
2021 Poster: Auto-Encoding Knowledge Graph for Unsupervised Medical Report Generation »
Fenglin Liu · Chenyu You · Xian Wu · Shen Ge · Sheng wang · Xu Sun -
2021 Poster: Topology-Imbalance Learning for Semi-Supervised Node Classification »
Deli Chen · Yankai Lin · Guangxiang Zhao · Xuancheng Ren · Peng Li · Jie Zhou · Xu Sun -
2021 Poster: Duplex Sequence-to-Sequence Learning for Reversible Machine Translation »
Zaixiang Zheng · Hao Zhou · Shujian Huang · Jiajun Chen · Jingjing Xu · Lei Li -
2020 Poster: Prophet Attention: Predicting Attention with Future Attention »
Fenglin Liu · Xuancheng Ren · Xian Wu · Shen Ge · Wei Fan · Yuexian Zou · Xu Sun -
2019 Poster: Aligning Visual Regions and Textual Concepts for Semantic-Grounded Image Representations »
Fenglin Liu · Yuanxin Liu · Xuancheng Ren · Xiaodong He · Xu Sun -
2014 Poster: Structure Regularization for Structured Prediction »
Xu Sun