Timezone: »

 
Poster
Disentangling Influence: Using disentangled representations to audit model predictions
Charles Marx · Richard Lanas Phillips · Sorelle Friedler · Carlos Scheidegger · Suresh Venkatasubramanian

Thu Dec 12 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #107

Motivated by the need to audit complex and black box models, there has been extensive research on quantifying how data features influence model predictions. Feature influence can be direct (a direct influence on model outcomes) and indirect (model outcomes are influenced via proxy features). Feature influence can also be expressed in aggregate over the training or test data or locally with respect to a single point. Current research has typically focused on one of each of these dimensions. In this paper, we develop disentangled influence audits, a procedure to audit the indirect influence of features. Specifically, we show that disentangled representations provide a mechanism to identify proxy features in the dataset, while allowing an explicit computation of feature influence on either individual outcomes or aggregate-level outcomes. We show through both theory and experiments that disentangled influence audits can both detect proxy features and show, for each individual or in aggregate, which of these proxy features affects the classifier being audited the most. In this respect, our method is more powerful than existing methods for ascertaining feature influence.

Author Information

Charles Marx (Haverford College)
Richard Lanas Phillips (Cornell University)
Sorelle Friedler (Haverford College)
Carlos Scheidegger (The University of Arizona)
Suresh Venkatasubramanian (University of Utah)

More from the Same Authors

  • 2021 : It's COMPASlicated: The Messy Relationship between RAI Datasets and Algorithmic Fairness Benchmarks »
    Michelle Bao · Angela Zhou · Samantha Zottola · Brian Brubach · Sarah Desmarais · Aaron Horowitz · Kristian Lum · Suresh Venkatasubramanian
  • 2021 : One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning »
    Richard Phillips · Han Shao · Avrim Blum · Nika Haghtalab
  • 2021 : One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning »
    Richard Phillips · Han Shao · Avrim Blum · Nika Haghtalab
  • 2021 Poster: Shapley Residuals: Quantifying the limits of the Shapley value for explanations »
    Indra Kumar · Carlos Scheidegger · Suresh Venkatasubramanian · Sorelle Friedler
  • 2021 : It's COMPASlicated: The Messy Relationship between RAI Datasets and Algorithmic Fairness Benchmarks »
    Michelle Bao · Angela Zhou · Samantha Zottola · Brian Brubach · Sarah Desmarais · Aaron Horowitz · Kristian Lum · Suresh Venkatasubramanian
  • 2019 : Lunch + Poster Session »
    Frederik Gerzer · Bill Yang Cai · Pieter-Jan Hoedt · Kelly Kochanski · Soo Kyung Kim · Yunsung Lee · Sunghyun Park · Sharon Zhou · Martin Gauch · Jonathan Wilson · Joyjit Chatterjee · Shamindra Shrotriya · Dimitri Papadimitriou · Christian Schön · Valentina Zantedeschi · Gabriella Baasch · Willem Waegeman · Gautier Cosne · Dara Farrell · Brendan Lucier · Letif Mones · Caleb Robinson · Tafara Chitsiga · Victor Kristof · Hari Prasanna Das · Yimeng Min · Alexandra Puchko · Alexandra Luccioni · Kyle Story · Jason Hickey · Yue Hu · Björn Lütjens · Zhecheng Wang · Renzhi Jing · Genevieve Flaspohler · Jingfan Wang · Saumya Sinha · Qinghu Tang · Armi Tiihonen · Ruben Glatt · Muge Komurcu · Jan Drgona · Juan Gomez-Romero · Ashish Kapoor · Dylan J Fitzpatrick · Alireza Rezvanifar · Adrian Albert · Olya (Olga) Irzak · Kara Lamb · Ankur Mahesh · Kiwan Maeng · Frederik Kratzert · Sorelle Friedler · Niccolo Dalmasso · Alex Robson · Lindiwe Malobola · Lucas Maystre · Yu-wen Lin · Surya Karthik Mukkavili · Brian Hutchinson · Alexandre Lacoste · Yanbing Wang · Zhengcheng Wang · Yinda Zhang · Victoria Preston · Jacob Pettit · Draguna Vrabie · Miguel Molina-Solana · Tonio Buonassisi · Andrew Annex · Tunai P Marques · Catalin Voss · Johannes Rausch · Max Evans
  • 2019 : Poster session »
    Jindong Gu · Alice Xiang · Atoosa Kasirzadeh · Zhiwei Han · Omar U. Florez · Frederik Harder · An-phi Nguyen · Amir Hossein Akhavan Rahnama · Michele Donini · Dylan Slack · Junaid Ali · Paramita Koley · Michiel Bakker · Anna Hilgard · Hailey James-Sorenson · Gonzalo Ramos · Jialin Lu · Jingying Yang · Margarita Boyarskaya · Martin Pawelczyk · Kacper Sokol · Mimansa Jaiswal · Umang Bhatt · David Alvarez-Melis · Aditya Grover · Charles Marx · Mengjiao Yang · Jingyan Wang · Gökhan Çapan · Hanchen Wang · Steffen Grünewälder · Moein Khajehnejad · Gourab Patro · Russell Kunes · Samuel Deng · Yuanting Liu · Luca Oneto · Mengze Li · Thomas Weber · Stefan Matthes · Duy Patrick Tu