`

Timezone: »

 
Poster
Spectral Modification of Graphs for Improved Spectral Clustering
Ioannis Koutis · Huong Le

Tue Dec 10 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #39
Spectral clustering algorithms provide approximate solutions to hard optimization problems that formulate graph partitioning in terms of the graph conductance. It is well understood that the quality of these approximate solutions is negatively affected by a possibly significant gap between the conductance and the second eigenvalue of the graph. In this paper we show that for \textbf{any} graph $G$, there exists a `spectral maximizer' graph $H$ which is cut-similar to $G$, but has eigenvalues that are near the theoretical limit implied by the cut structure of $G$. Applying then spectral clustering on $H$ has the potential to produce improved cuts that also exist in $G$ due to the cut similarity. This leads to the second contribution of this work: we describe a practical spectral modification algorithm that raises the eigenvalues of the input graph, while preserving its cuts. Combined with spectral clustering on the modified graph, this yields demonstrably improved cuts.

Author Information

Ioannis Koutis (New Jersey Institute of Technology)
Huong Le (NJIT)

More from the Same Authors

  • 2013 Workshop: Large Scale Matrix Analysis and Inference »
    Reza Zadeh · Gunnar Carlsson · Michael Mahoney · Manfred K. Warmuth · Wouter M Koolen · Nati Srebro · Satyen Kale · Malik Magdon-Ismail · Ashish Goel · Matei A Zaharia · David Woodruff · Ioannis Koutis · Benjamin Recht