Timezone: »

 
Poster
Visual Concept-Metaconcept Learning
Chi Han · Jiayuan Mao · Chuang Gan · Josh Tenenbaum · Jiajun Wu

Wed Dec 11 05:00 PM -- 07:00 PM (PST) @ East Exhibition Hall B + C #120

Humans reason with concepts and metaconcepts: we recognize red and blue from visual input; we also understand that they are colors, i.e., red is an instance of color. In this paper, we propose the visual concept-metaconcept learner (VCML) for joint learning of concepts and metaconcepts from images and associated question-answer pairs. The key is to exploit the bidirectional connection between visual concepts and metaconcepts. Visual representations provide grounding cues for predicting relations between unseen pairs of concepts. Knowing that red and blue are instances of color, we generalize to the fact that green is also an instance of color since they all categorize the hue of objects. Meanwhile, knowledge about metaconcepts empowers visual concept learning from limited, noisy, and even biased data. From just a few examples of purple cubes we can understand a new color purple, which resembles the hue of the cubes instead of the shape of them. Evaluation on both synthetic and real-world datasets validates our claims.

Author Information

Chi Han (Tsinghua University)
Jiayuan Mao (MIT)
Chuang Gan (MIT-IBM Watson AI Lab)
Josh Tenenbaum (MIT)

Josh Tenenbaum is an Associate Professor of Computational Cognitive Science at MIT in the Department of Brain and Cognitive Sciences and the Computer Science and Artificial Intelligence Laboratory (CSAIL). He received his PhD from MIT in 1999, and was an Assistant Professor at Stanford University from 1999 to 2002. He studies learning and inference in humans and machines, with the twin goals of understanding human intelligence in computational terms and bringing computers closer to human capacities. He focuses on problems of inductive generalization from limited data -- learning concepts and word meanings, inferring causal relations or goals -- and learning abstract knowledge that supports these inductive leaps in the form of probabilistic generative models or 'intuitive theories'. He has also developed several novel machine learning methods inspired by human learning and perception, most notably Isomap, an approach to unsupervised learning of nonlinear manifolds in high-dimensional data. He has been Associate Editor for the journal Cognitive Science, has been active on program committees for the CogSci and NIPS conferences, and has co-organized a number of workshops, tutorials and summer schools in human and machine learning. Several of his papers have received outstanding paper awards or best student paper awards at the IEEE Computer Vision and Pattern Recognition (CVPR), NIPS, and Cognitive Science conferences. He is the recipient of the New Investigator Award from the Society for Mathematical Psychology (2005), the Early Investigator Award from the Society of Experimental Psychologists (2007), and the Distinguished Scientific Award for Early Career Contribution to Psychology (in the area of cognition and human learning) from the American Psychological Association (2008).

Jiajun Wu (Google)

More from the Same Authors