Timezone: »
Video-to-video synthesis (vid2vid) aims at converting an input semantic video, such as videos of human poses or segmentation masks, to an output photorealistic video. While the state-of-the-art of vid2vid has advanced significantly, existing approaches share two major limitations. First, they are data-hungry. Numerous images of a target human subject or a scene are required for training. Second, a learned model has limited generalization capability. A pose-to-human vid2vid model can only synthesize poses of the single person in the training set. It does not generalize to other humans that are not in the training set. To address the limitations, we propose a few-shot vid2vid framework, which learns to synthesize videos of previously unseen subjects or scenes by leveraging few example images of the target at test time. Our model achieves this few-shot generalization capability via a novel network weight generation module utilizing an attention mechanism. We conduct extensive experimental validations with comparisons to strong baselines using several large-scale video datasets including human-dancing videos, talking-head videos, and street-scene videos. The experimental results verify the effectiveness of the proposed framework in addressing the two limitations of existing vid2vid approaches.
Author Information
Ting-Chun Wang (NVIDIA)
Ming-Yu Liu (Nvidia Research)
Andrew Tao (Nvidia Corporation)
Guilin Liu (NVIDIA)
Bryan Catanzaro (NVIDIA)
Jan Kautz (NVIDIA)
More from the Same Authors
-
2021 : Physics Informed RNN-DCT Networks for Time-Dependent Partial Differential Equations »
Benjamin Wu · Oliver Hennigh · Jan Kautz · Sanjay Choudhry · Wonmin Byeon -
2022 : Multi-objective Reinforcement Learning with Adaptive Pareto Reset for Prefix Adder Design »
Jialin Song · Rajarshi Roy · Jonathan Raiman · Robert Kirby · Neel Kant · Saad Godil · Bryan Catanzaro -
2022 Poster: Implicit Warping for Animation with Image Sets »
Arun Mallya · Ting-Chun Wang · Ming-Yu Liu -
2022 Poster: Generating Long Videos of Dynamic Scenes »
Tim Brooks · Janne Hellsten · Miika Aittala · Ting-Chun Wang · Timo Aila · Jaakko Lehtinen · Ming-Yu Liu · Alexei Efros · Tero Karras -
2022 Poster: Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models »
Boxin Wang · Wei Ping · Chaowei Xiao · Peng Xu · Mostofa Patwary · Mohammad Shoeybi · Bo Li · Anima Anandkumar · Bryan Catanzaro -
2022 Poster: Factuality Enhanced Language Models for Open-Ended Text Generation »
Nayeon Lee · Wei Ping · Peng Xu · Mostofa Patwary · Pascale N Fung · Mohammad Shoeybi · Bryan Catanzaro -
2021 : Low-Precision Training in Logarithmic Number System using Multiplicative Weight Update »
Jiawei Zhao · Steve Dai · Rangha Venkatesan · Brian Zimmer · Mustafa Ali · Ming-Yu Liu · Brucek Khailany · · Anima Anandkumar -
2021 Poster: A Contrastive Learning Approach for Training Variational Autoencoder Priors »
Jyoti Aneja · Alex Schwing · Jan Kautz · Arash Vahdat -
2021 Poster: Score-based Generative Modeling in Latent Space »
Arash Vahdat · Karsten Kreis · Jan Kautz -
2021 Poster: Coupled Segmentation and Edge Learning via Dynamic Graph Propagation »
Zhiding Yu · Rui Huang · Wonmin Byeon · Sifei Liu · Guilin Liu · Thomas Breuel · Anima Anandkumar · Jan Kautz -
2021 Poster: Long-Short Transformer: Efficient Transformers for Language and Vision »
Chen Zhu · Wei Ping · Chaowei Xiao · Mohammad Shoeybi · Tom Goldstein · Anima Anandkumar · Bryan Catanzaro -
2020 : Invited Speaker: Bryan Catanzaro »
Bryan Catanzaro -
2020 Poster: NVAE: A Deep Hierarchical Variational Autoencoder »
Arash Vahdat · Jan Kautz -
2020 Spotlight: NVAE: A Deep Hierarchical Variational Autoencoder »
Arash Vahdat · Jan Kautz -
2020 Poster: Online Adaptation for Consistent Mesh Reconstruction in the Wild »
Xueting Li · Sifei Liu · Shalini De Mello · Kihwan Kim · Xiaolong Wang · Ming-Hsuan Yang · Jan Kautz -
2020 Poster: Neural FFTs for Universal Texture Image Synthesis »
Morteza Mardani · Guilin Liu · Aysegul Dundar · Shiqiu Liu · Andrew Tao · Bryan Catanzaro -
2020 Poster: Can Q-Learning with Graph Networks Learn a Generalizable Branching Heuristic for a SAT Solver? »
Vitaly Kurin · Saad Godil · Shimon Whiteson · Bryan Catanzaro -
2020 Poster: Convolutional Tensor-Train LSTM for Spatio-Temporal Learning »
Jiahao Su · Wonmin Byeon · Jean Kossaifi · Furong Huang · Jan Kautz · Anima Anandkumar -
2020 Poster: On the distance between two neural networks and the stability of learning »
Jeremy Bernstein · Arash Vahdat · Yisong Yue · Ming-Yu Liu -
2019 Poster: Joint-task Self-supervised Learning for Temporal Correspondence »
Xueting Li · Sifei Liu · Shalini De Mello · Xiaolong Wang · Jan Kautz · Ming-Hsuan Yang -
2019 Poster: Dancing to Music »
Hsin-Ying Lee · Xiaodong Yang · Ming-Yu Liu · Ting-Chun Wang · Yu-Ding Lu · Ming-Hsuan Yang · Jan Kautz -
2018 : Jan Kautz »
Jan Kautz -
2018 Poster: Context-aware Synthesis and Placement of Object Instances »
Donghoon Lee · Sifei Liu · Jinwei Gu · Ming-Yu Liu · Ming-Hsuan Yang · Jan Kautz -
2018 Poster: Video-to-Video Synthesis »
Ting-Chun Wang · Ming-Yu Liu · Jun-Yan Zhu · Guilin Liu · Andrew Tao · Jan Kautz · Bryan Catanzaro -
2017 : Poster Session (encompasses coffee break) »
Beidi Chen · Borja Balle · Daniel Lee · iuri frosio · Jitendra Malik · Jan Kautz · Ke Li · Masashi Sugiyama · Miguel A. Carreira-Perpinan · Ramin Raziperchikolaei · Theja Tulabandhula · Yung-Kyun Noh · Adams Wei Yu -
2017 Poster: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Spotlight: Unsupervised Image-to-Image Translation Networks »
Ming-Yu Liu · Thomas Breuel · Jan Kautz -
2017 Poster: Learning Affinity via Spatial Propagation Networks »
Sifei Liu · Shalini De Mello · Jinwei Gu · Guangyu Zhong · Ming-Hsuan Yang · Jan Kautz -
2014 Workshop: Deep Learning and Representation Learning »
Andrew Y Ng · Yoshua Bengio · Adam Coates · Roland Memisevic · Sharanyan Chetlur · Geoffrey E Hinton · Shamim Nemati · Bryan Catanzaro · Surya Ganguli · Herbert Jaeger · Phil Blunsom · Leon Bottou · Volodymyr Mnih · Chen-Yu Lee · Rich M Schwartz