Timezone: »
Understanding and reasoning about physics is an important ability of intelligent agents. We develop the PHYRE benchmark for physical reasoning that contains a set of simple classical mechanics puzzles in a 2D physical environment. The benchmark is designed to encourage the development of learning algorithms that are sample-efficient and generalize well across puzzles. We test several modern learning algorithms on PHYRE and find that these algorithms fall short in solving the puzzles efficiently. We expect that PHYRE will encourage the development of novel sample-efficient agents that learn efficient but useful models of physics. For code and to play PHYRE for yourself, please visit https://player.phyre.ai.
Author Information
Anton Bakhtin (Facebook AI Research)
Laurens van der Maaten (Facebook)
Justin Johnson (University of Michigan / FAIR)
Laura Gustafson (Facebook AI Research)
Ross Girshick (FAIR)
More from the Same Authors
-
2020 Workshop: Self-Supervised Learning -- Theory and Practice »
Pengtao Xie · Shanghang Zhang · Pulkit Agrawal · Ishan Misra · Cynthia Rudin · Abdelrahman Mohamed · Wenzhen Yuan · Barret Zoph · Laurens van der Maaten · Xingyi Yang · Eric Xing -
2020 Poster: Combining Deep Reinforcement Learning and Search for Imperfect-Information Games »
Noam Brown · Anton Bakhtin · Adam Lerer · Qucheng Gong -
2020 Expo Workshop: Building AI with Security and Privacy in mind »
Geeta Chauhan · Laurens van der Maaten · Davide Testuggine · Andrew Trask · Joe Spisak