Timezone: »
Many real-world data represent sequences of interdependent events unfolding over time. They can be modeled naturally as realizations of a point process. Despite many potential applications, existing point process models are limited in their ability to capture complex patterns of interaction. Hawkes processes admit many efficient inference algorithms, but are limited to mutually excitatory effects. Non- linear Hawkes processes allow for more complex influence patterns, but for their estimation it is typically necessary to resort to discrete-time approximations that may yield poor generative models. In this paper, we introduce the first general class of Bayesian point process models extended with a nonlinear component that allows both excitatory and inhibitory relationships in continuous time. We derive a fully Bayesian inference algorithm for these processes using Polya-Gamma augmentation and Poisson thinning. We evaluate the proposed model on single and multi-neuronal spike train recordings. Results demonstrate that the proposed model, unlike existing point process models, can generate biologically-plausible spike trains, while still achieving competitive predictive likelihoods.
Author Information
Ifigeneia Apostolopoulou (Carnegie Mellon University)
Scott Linderman (Stanford University)
Kyle Miller (Carnegie Mellon University)
Artur Dubrawski (Carnegie Mellon University)
More from the Same Authors
-
2021 : Robust Interpretable Rule Learning to Identify Expertise Transfer Opportunities in Healthcare »
Willa Potosnak · Sebastian Caldas Rivera · Gilles Clermont · Kyle Miller · Artur Dubrawski -
2021 : Predicting Sufficiency for Hemorrhage Resuscitation Using Non-invasive Physiological Data without Reference to Personal Baselines »
Xinyu Li · Michael Pinsky · Artur Dubrawski -
2022 : Neural encoding and decoding of facial movements »
Scott Linderman -
2022 Poster: SIXO: Smoothing Inference with Twisted Objectives »
Dieterich Lawson · Allan Raventós · andrew warrington · Scott Linderman -
2022 Poster: Distinguishing discrete and continuous behavioral variability using warped autoregressive HMMs »
Julia Costacurta · Lea Duncker · Blue Sheffer · Winthrop Gillis · Caleb Weinreb · Jeffrey Markowitz · Sandeep R Datta · Alex Williams · Scott Linderman -
2020 : ML4D Townhall »
Artur Dubrawski -
2020 Poster: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Oral: Point process models for sequence detection in high-dimensional neural spike trains »
Alex Williams · Anthony Degleris · Yixin Wang · Scott Linderman -
2020 Session: Orals & Spotlights Track 33: Health/AutoML/(Soft|Hard)ware »
Dustin Tran · Artur Dubrawski -
2020 Poster: Recurrent Switching Dynamical Systems Models for Multiple Interacting Neural Populations »
Joshua Glaser · Matthew Whiteway · John Cunningham · Liam Paninski · Scott Linderman -
2020 Poster: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2020 Spotlight: Preference-based Reinforcement Learning with Finite-Time Guarantees »
Yichong Xu · Ruosong Wang · Lin Yang · Aarti Singh · Artur Dubrawski -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2019 Poster: BehaveNet: nonlinear embedding and Bayesian neural decoding of behavioral videos »
Eleanor Batty · Matthew Whiteway · Shreya Saxena · Dan Biderman · Taiga Abe · Simon Musall · Winthrop Gillis · Jeffrey Markowitz · Anne Churchland · John Cunningham · Sandeep R Datta · Scott Linderman · Liam Paninski -
2018 : Introductory remarks »
Artur Dubrawski -
2017 : Introductory remarks »
Artur Dubrawski -
2017 Poster: Noise-Tolerant Interactive Learning Using Pairwise Comparisons »
Yichong Xu · Hongyang Zhang · Aarti Singh · Artur Dubrawski · Kyle Miller -
2015 Demonstration: An interactive system for the extraction of meaningful visualizations from high-dimensional data »
Madalina Fiterau · Artur Dubrawski · Donghan Wang -
2012 Poster: Projection Retrieval for Classification »
Madalina Fiterau · Artur Dubrawski -
2008 Poster: Learning the Semantic Correlation: An Alternative Way to Gain from Unlabeled Text »
Yi Zhang · Jeff Schneider · Artur Dubrawski