Timezone: »
Despite renewed interest in emergent language simulations with
neural networks, little is known about the basic properties of the
induced code, and how they compare to human language. One
fundamental characteristic of the latter, known as Zipf's Law of
Abbreviation (ZLA), is that more frequent words are efficiently
associated to shorter strings. We study whether the same pattern
emerges when two neural networks, a speaker'' and a
listener'',
are trained to play a signaling game. Surprisingly, we find that
networks develop an \emph{anti-efficient} encoding scheme,
in which the most frequent inputs are associated to the longest messages,
and messages in general are skewed towards the maximum length threshold.
This anti-efficient code appears easier to discriminate for the listener,
and, unlike in human communication, the speaker does not impose a
contrasting least-effort pressure towards brevity. Indeed, when the
cost function includes a penalty for longer messages, the resulting
message distribution starts respecting ZLA. Our analysis stresses
the importance of studying the basic features of emergent
communication in a highly controlled setup, to ensure the latter
will not strand too far from human language. Moreover, we present a
concrete illustration of how different functional pressures can lead
to successful communication codes that lack basic properties of
human language, thus highlighting the role such pressures play in
the latter.
Author Information
Rahma Chaabouni (FAIR/ENS)
Eugene Kharitonov (Facebook AI)
Emmanuel Dupoux (Ecole des Hautes Etudes en Sciences Sociales)
Marco Baroni (University of Trento)
More from the Same Authors
-
2022 Poster: Emergent Communication: Generalization and Overfitting in Lewis Games »
Mathieu Rita · Corentin Tallec · Paul Michel · Jean-Bastien Grill · Olivier Pietquin · Emmanuel Dupoux · Florian Strub -
2021 : Enhanced Zero-Resource Speech Challenge 2021: Language Modelling from Speech and Images + Q&A »
Ewan Dunbar · Alejandrina Cristia · Okko Räsänen · Bertrand Higy · Marvin Lavechin · Grzegorz Chrupała · Afra Alishahi · Chen Yu · Maureen De Seyssel · Tu Anh Nguyen · Mathieu Bernard · Nicolas Hamilakis · Emmanuel Dupoux -
2021 Poster: Interpretable agent communication from scratch (with a generic visual processor emerging on the side) »
Roberto Dessi · Eugene Kharitonov · Baroni Marco -
2020 Workshop: Talking to Strangers: Zero-Shot Emergent Communication »
Marie Ossenkopf · Angelos Filos · Abhinav Gupta · Michael Noukhovitch · Angeliki Lazaridou · Jakob Foerster · Kalesha Bullard · Rahma Chaabouni · Eugene Kharitonov · Roberto Dessì -
2019 : Extended Poster Session »
Travis LaCroix · Marie Ossenkopf · Mina Lee · Nicole Fitzgerald · Daniela Mihai · Jonathon Hare · Ali Zaidi · Alexander Cowen-Rivers · Alana Marzoev · Eugene Kharitonov · Luyao Yuan · Tomasz Korbak · Paul Pu Liang · Yi Ren · Roberto Dessì · Peter Potash · Shangmin Guo · Tatsunori Hashimoto · Percy Liang · Julian Zubek · Zipeng Fu · Song-Chun Zhu · Adam Lerer -
2018 Workshop: Modeling the Physical World: Learning, Perception, and Control »
Jiajun Wu · Kelsey Allen · Kevin Smith · Jessica Hamrick · Emmanuel Dupoux · Marc Toussaint · Josh Tenenbaum -
2016 : Datasets, Methodology, and Challenges in Intuitive Physics »
Emmanuel Dupoux · Josh Tenenbaum -
2016 : Naive Physics 101: A Tutorial »
Emmanuel Dupoux · Josh Tenenbaum -
2016 Workshop: Intuitive Physics »
Adam Lerer · Jiajun Wu · Josh Tenenbaum · Emmanuel Dupoux · Rob Fergus