Timezone: »
We propose and investigate new complementary methodologies for estimating predictive variance networks in regression neural networks. We derive a locally aware mini-batching scheme that results in sparse robust gradients, and we show how to make unbiased weight updates to a variance network. Further, we formulate a heuristic for robustly fitting both the mean and variance networks post hoc. Finally, we take inspiration from posterior Gaussian processes and propose a network architecture with similar extrapolation properties to Gaussian processes. The proposed methodologies are complementary, and improve upon baseline methods individually. Experimentally, we investigate the impact of predictive uncertainty on multiple datasets and tasks ranging from regression, active learning and generative modeling. Experiments consistently show significant improvements in predictive uncertainty estimation over state-of-the-art methods across tasks and datasets.
Author Information
Nicki Skafte (Technical University of Denmark)
Martin Jørgensen (Technical University of Denmark)
Søren Hauberg (Technical University of Denmark)
More from the Same Authors
-
2021 : A kernel for continuously relaxed, discrete Bayesian optimization of protein sequences »
Yevgen Zainchkovskyy · Simon Bartels · Søren Hauberg · Jes Frellsen · Wouter Boomsma -
2021 Meetup: Copenhagen, Denmark »
Søren Hauberg -
2022 : Probabilistic thermal stability prediction through sparsity promoting transformer representation »
Yevgen Zainchkovskyy · Jesper Ferkinghoff-Borg · Anja Bennett · Thomas Egebjerg · Nikolai Lorenzen · Per Greisen · Søren Hauberg · Carsten Stahlhut -
2022 : Optimal Latent Transport »
Hrittik Roy · Søren Hauberg -
2022 : Identifying latent distances with Finslerian geometry »
Alison Pouplin · David Eklund · Carl Henrik Ek · Søren Hauberg -
2022 Poster: Revisiting Active Sets for Gaussian Process Decoders »
Pablo Moreno-Muñoz · Cilie Feldager · Søren Hauberg -
2022 Poster: Laplacian Autoencoders for Learning Stochastic Representations »
Marco Miani · Frederik Warburg · Pablo Moreno-Muñoz · Nicki Skafte · Søren Hauberg -
2021 Poster: Bounds all around: training energy-based models with bidirectional bounds »
Cong Geng · Jia Wang · Zhiyong Gao · Jes Frellsen · Søren Hauberg -
2020 : Isometric Gaussian Process Latent Variable Model »
Martin Jørgensen · Søren Hauberg -
2020 : Invited Talk 3: Reparametrization invariance in representation learning »
Søren Hauberg -
2019 Poster: Diffeomorphic Temporal Alignment Nets »
Ron A Shapira Weber · Matan Eyal · Nicki Skafte · Oren Shriki · Oren Freifeld -
2019 Poster: Explicit Disentanglement of Appearance and Perspective in Generative Models »
Nicki Skafte · Søren Hauberg -
2016 Poster: A Locally Adaptive Normal Distribution »
Georgios Arvanitidis · Lars K Hansen · Søren Hauberg