Timezone: »
Poster
Hypothesis Set Stability and Generalization
Dylan Foster · Spencer Greenberg · Satyen Kale · Haipeng Luo · Mehryar Mohri · Karthik Sridharan
Tue Dec 10 05:30 PM -- 07:30 PM (PST) @ East Exhibition Hall B + C #220
We present a study of generalization for data-dependent hypothesis sets. We give a general learning guarantee for data-dependent hypothesis sets based on a notion of transductive Rademacher complexity. Our main result is a generalization bound for data-dependent hypothesis sets expressed in terms of a notion of hypothesis set stability and a notion of Rademacher complexity for data-dependent hypothesis sets that we introduce. This bound admits as special cases both standard Rademacher complexity bounds and algorithm-dependent uniform stability bounds. We also illustrate the use of these learning bounds in the analysis of several scenarios.
Author Information
Dylan Foster (MIT)
Spencer Greenberg (Spark Wave)
Satyen Kale (Google)
Haipeng Luo (University of Southern California)
Mehryar Mohri (Courant Inst. of Math. Sciences & Google Research)
Karthik Sridharan (Cornell University)
More from the Same Authors
-
2021 Spotlight: Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations »
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan -
2021 Spotlight: On the Existence of The Adversarial Bayes Classifier »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2021 Spotlight: Beyond Value-Function Gaps: Improved Instance-Dependent Regret Bounds for Episodic Reinforcement Learning »
Christoph Dann · Teodor Vanislavov Marinov · Mehryar Mohri · Julian Zimmert -
2021 Spotlight: Calibration and Consistency of Adversarial Surrogate Losses »
Pranjal Awasthi · Natalie Frank · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 : Clairvoyant Regret Minimization: Equivalence with Nemirovski’s Conceptual Prox Method and Extension to General Convex Games »
Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : AdaME: Adaptive learning of multisource adaptationensembles »
Scott Yak · Javier Gonzalvo · Mehryar Mohri · Corinna Cortes -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 Spotlight: Lightning Talks 6A-2 »
Yichuan Mo · Botao Yu · Gang Li · Zezhong Xu · Haoran Wei · Arsene Fansi Tchango · Raef Bassily · Haoyu Lu · Qi Zhang · Songming Liu · Mingyu Ding · Peiling Lu · Yifei Wang · Xiang Li · Dongxian Wu · Ping Guo · Wen Zhang · Hao Zhongkai · Mehryar Mohri · Rishab Goel · Yisen Wang · Yifei Wang · Yangguang Zhu · Zhi Wen · Ananda Theertha Suresh · Chengyang Ying · Yujie Wang · Peng Ye · Rui Wang · Nanyi Fei · Hui Chen · Yiwen Guo · Wei Hu · Chenglong Liu · Julien Martel · Yuqi Huo · Wu Yichao · Hang Su · Yisen Wang · Peng Wang · Huajun Chen · Xu Tan · Jun Zhu · Ding Liang · Zhiwu Lu · Joumana Ghosn · Shanshan Zhang · Wei Ye · Ze Cheng · Shikun Zhang · Tao Qin · Tie-Yan Liu -
2022 Spotlight: Differentially Private Learning with Margin Guarantees »
Raef Bassily · Mehryar Mohri · Ananda Theertha Suresh -
2022 Spotlight: Lightning Talks 4A-2 »
Barakeel Fanseu Kamhoua · Hualin Zhang · Taiki Miyagawa · Tomoya Murata · Xin Lyu · Yan Dai · Elena Grigorescu · Zhipeng Tu · Lijun Zhang · Taiji Suzuki · Wei Jiang · Haipeng Luo · Lin Zhang · Xi Wang · Young-San Lin · Huan Xiong · Liyu Chen · Bin Gu · Jinfeng Yi · Yongqiang Chen · Sandeep Silwal · Yiguang Hong · Maoyuan Song · Lei Wang · Tianbao Yang · Han Yang · MA Kaili · Samson Zhou · Deming Yuan · Bo Han · Guodong Shi · Bo Li · James Cheng -
2022 Spotlight: Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback »
Yan Dai · Haipeng Luo · Liyu Chen -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : Invited Talk #1, Differentially Private Learning with Margin Guarantees, Mehryar Mohri »
Mehryar Mohri -
2022 Poster: Near-Optimal Goal-Oriented Reinforcement Learning in Non-Stationary Environments »
Liyu Chen · Haipeng Luo -
2022 Poster: Uncoupled Learning Dynamics with $O(\log T)$ Swap Regret in Multiplayer Games »
Ioannis Anagnostides · Gabriele Farina · Christian Kroer · Chung-Wei Lee · Haipeng Luo · Tuomas Sandholm -
2022 Poster: Interaction-Grounded Learning with Action-Inclusive Feedback »
Tengyang Xie · Akanksha Saran · Dylan J Foster · Lekan Molu · Ida Momennejad · Nan Jiang · Paul Mineiro · John Langford -
2022 Poster: Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2022 Poster: Multi-Class $H$-Consistency Bounds »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Poster: Stochastic Online Learning with Feedback Graphs: Finite-Time and Asymptotic Optimality »
Teodor Vanislavov Marinov · Mehryar Mohri · Julian Zimmert -
2022 Poster: Follow-the-Perturbed-Leader for Adversarial Markov Decision Processes with Bandit Feedback »
Yan Dai · Haipeng Luo · Liyu Chen -
2022 Poster: Reproducibility in Optimization: Theoretical Framework and Limits »
Kwangjun Ahn · Prateek Jain · Ziwei Ji · Satyen Kale · Praneeth Netrapalli · Gil I Shamir -
2022 Poster: Differentially Private Learning with Margin Guarantees »
Raef Bassily · Mehryar Mohri · Ananda Theertha Suresh -
2022 Poster: Understanding the Eluder Dimension »
Gene Li · Pritish Kamath · Dylan J Foster · Nati Srebro -
2022 Poster: From Gradient Flow on Population Loss to Learning with Stochastic Gradient Descent »
Christopher De Sa · Satyen Kale · Jason Lee · Ayush Sekhari · Karthik Sridharan -
2022 Poster: Near-Optimal No-Regret Learning Dynamics for General Convex Games »
Gabriele Farina · Ioannis Anagnostides · Haipeng Luo · Chung-Wei Lee · Christian Kroer · Tuomas Sandholm -
2022 Poster: On the Complexity of Adversarial Decision Making »
Dylan J Foster · Alexander Rakhlin · Ayush Sekhari · Karthik Sridharan -
2021 Poster: SGD: The Role of Implicit Regularization, Batch-size and Multiple-epochs »
Ayush Sekhari · Karthik Sridharan · Satyen Kale -
2021 Poster: A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement Learning »
Christoph Dann · Mehryar Mohri · Tong Zhang · Julian Zimmert -
2021 Poster: On the Existence of The Adversarial Bayes Classifier »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2021 Poster: Beyond Value-Function Gaps: Improved Instance-Dependent Regret Bounds for Episodic Reinforcement Learning »
Christoph Dann · Teodor Vanislavov Marinov · Mehryar Mohri · Julian Zimmert -
2021 Poster: The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition »
Tiancheng Jin · Longbo Huang · Haipeng Luo -
2021 Poster: Last-iterate Convergence in Extensive-Form Games »
Chung-Wei Lee · Christian Kroer · Haipeng Luo -
2021 Poster: Learning with User-Level Privacy »
Daniel Levy · Ziteng Sun · Kareem Amin · Satyen Kale · Alex Kulesza · Mehryar Mohri · Ananda Theertha Suresh -
2021 Poster: Boosting with Multiple Sources »
Corinna Cortes · Mehryar Mohri · Dmitry Storcheus · Ananda Theertha Suresh -
2021 Poster: Breaking the centralized barrier for cross-device federated learning »
Sai Praneeth Karimireddy · Martin Jaggi · Satyen Kale · Mehryar Mohri · Sashank Reddi · Sebastian Stich · Ananda Theertha Suresh -
2021 Poster: Implicit Finite-Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path »
Liyu Chen · Mehdi Jafarnia-Jahromi · Rahul Jain · Haipeng Luo -
2021 Poster: Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations »
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan -
2021 Oral: Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination »
Dylan Foster · Akshay Krishnamurthy -
2021 Poster: Policy Optimization in Adversarial MDPs: Improved Exploration via Dilated Bonuses »
Haipeng Luo · Chen-Yu Wei · Chung-Wei Lee -
2021 Poster: Efficient First-Order Contextual Bandits: Prediction, Allocation, and Triangular Discrimination »
Dylan Foster · Akshay Krishnamurthy -
2021 Poster: Calibration and Consistency of Adversarial Surrogate Losses »
Pranjal Awasthi · Natalie Frank · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2021 Oral: The best of both worlds: stochastic and adversarial episodic MDPs with unknown transition »
Tiancheng Jin · Longbo Huang · Haipeng Luo -
2020 Poster: Estimating Training Data Influence by Tracing Gradient Descent »
Garima Pruthi · Frederick Liu · Satyen Kale · Mukund Sundararajan -
2020 Spotlight: Estimating Training Data Influence by Tracing Gradient Descent »
Garima Pruthi · Frederick Liu · Satyen Kale · Mukund Sundararajan -
2020 Poster: Adapting to Misspecification in Contextual Bandits »
Dylan Foster · Claudio Gentile · Mehryar Mohri · Julian Zimmert -
2020 Poster: Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs »
Chung-Wei Lee · Haipeng Luo · Chen-Yu Wei · Mengxiao Zhang -
2020 Poster: Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition »
Tiancheng Jin · Haipeng Luo -
2020 Poster: Online learning with dynamics: A minimax perspective »
Kush Bhatia · Karthik Sridharan -
2020 Spotlight: Simultaneously Learning Stochastic and Adversarial Episodic MDPs with Known Transition »
Tiancheng Jin · Haipeng Luo -
2020 Oral: Bias no more: high-probability data-dependent regret bounds for adversarial bandits and MDPs »
Chung-Wei Lee · Haipeng Luo · Chen-Yu Wei · Mengxiao Zhang -
2020 Poster: Agnostic Learning with Multiple Objectives »
Corinna Cortes · Mehryar Mohri · Javier Gonzalvo · Dmitry Storcheus -
2020 Poster: Reinforcement Learning with Feedback Graphs »
Christoph Dann · Yishay Mansour · Mehryar Mohri · Ayush Sekhari · Karthik Sridharan -
2020 Poster: Learning the Linear Quadratic Regulator from Nonlinear Observations »
Zakaria Mhammedi · Dylan Foster · Max Simchowitz · Dipendra Misra · Wen Sun · Akshay Krishnamurthy · Alexander Rakhlin · John Langford -
2020 Poster: PAC-Bayes Learning Bounds for Sample-Dependent Priors »
Pranjal Awasthi · Satyen Kale · Stefani Karp · Mehryar Mohri -
2020 Poster: Comparator-Adaptive Convex Bandits »
Dirk van der Hoeven · Ashok Cutkosky · Haipeng Luo -
2020 Session: Orals & Spotlights Track 11: Learning Theory »
Dylan Foster · Nicolò Cesa-Bianchi -
2020 Poster: Independent Policy Gradient Methods for Competitive Reinforcement Learning »
Constantinos Daskalakis · Dylan Foster · Noah Golowich -
2020 : Real World RL with Vowpal Wabbit: Beyond Contextual Bandits »
John Langford · Marek Wydmuch · Maryam Majzoubi · Adith Swaminathan · · Dylan Foster · Paul Mineiro -
2019 : Mehryar Mohri, "Learning with Sample-Dependent Hypothesis Sets" »
Mehryar Mohri -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 Poster: Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces »
Chuan Guo · Ali Mousavi · Xiang Wu · Daniel Holtmann-Rice · Satyen Kale · Sashank Reddi · Sanjiv Kumar -
2019 Poster: Learning GANs and Ensembles Using Discrepancy »
Ben Adlam · Corinna Cortes · Mehryar Mohri · Ningshan Zhang -
2019 Poster: Equipping Experts/Bandits with Long-term Memory »
Kai Zheng · Haipeng Luo · Ilias Diakonikolas · Liwei Wang -
2019 Poster: Bandits with Feedback Graphs and Switching Costs »
Raman Arora · Teodor Vanislavov Marinov · Mehryar Mohri -
2019 Poster: Model Selection for Contextual Bandits »
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo -
2019 Spotlight: Model Selection for Contextual Bandits »
Dylan Foster · Akshay Krishnamurthy · Haipeng Luo -
2019 Poster: Regularized Gradient Boosting »
Corinna Cortes · Mehryar Mohri · Dmitry Storcheus -
2018 Poster: Policy Regret in Repeated Games »
Raman Arora · Michael Dinitz · Teodor Vanislavov Marinov · Mehryar Mohri -
2018 Poster: Contextual bandits with surrogate losses: Margin bounds and efficient algorithms »
Dylan Foster · Akshay Krishnamurthy -
2018 Poster: Efficient Gradient Computation for Structured Output Learning with Rational and Tropical Losses »
Corinna Cortes · Vitaly Kuznetsov · Mehryar Mohri · Dmitry Storcheus · Scott Yang -
2018 Poster: Online Learning of Quantum States »
Scott Aaronson · Xinyi Chen · Elad Hazan · Satyen Kale · Ashwin Nayak -
2018 Poster: Adaptive Methods for Nonconvex Optimization »
Manzil Zaheer · Sashank Reddi · Devendra S Sachan · Satyen Kale · Sanjiv Kumar -
2018 Poster: Algorithms and Theory for Multiple-Source Adaptation »
Judy Hoffman · Mehryar Mohri · Ningshan Zhang -
2018 Poster: Uniform Convergence of Gradients for Non-Convex Learning and Optimization »
Dylan Foster · Ayush Sekhari · Karthik Sridharan -
2017 : Mehryar Mohri (NYU) on Tight Learning Bounds for Multi-Class Classification »
Mehryar Mohri -
2017 : (Invited Talk) Mehryar Mohri: Regret minimization against strategic buyers. »
Mehryar Mohri -
2017 Poster: Discriminative State Space Models »
Vitaly Kuznetsov · Mehryar Mohri -
2017 Poster: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Spotlight: Spectrally-normalized margin bounds for neural networks »
Peter Bartlett · Dylan J Foster · Matus Telgarsky -
2017 Poster: Online Learning with Transductive Regret »
Scott Yang · Mehryar Mohri -
2017 Poster: Parameter-Free Online Learning via Model Selection »
Dylan J Foster · Satyen Kale · Mehryar Mohri · Karthik Sridharan -
2017 Spotlight: Parameter-Free Online Learning via Model Selection »
Dylan J Foster · Satyen Kale · Mehryar Mohri · Karthik Sridharan -
2017 Spotlight: Online Learning with Transductive Regret »
Scott Yang · Mehryar Mohri -
2016 Poster: Exploiting the Structure: Stochastic Gradient Methods Using Raw Clusters »
Zeyuan Allen-Zhu · Yang Yuan · Karthik Sridharan -
2016 Poster: Structured Prediction Theory Based on Factor Graph Complexity »
Corinna Cortes · Vitaly Kuznetsov · Mehryar Mohri · Scott Yang -
2016 Poster: Learning in Games: Robustness of Fast Convergence »
Dylan Foster · zhiyuan li · Thodoris Lykouris · Karthik Sridharan · Eva Tardos -
2016 Poster: Hardness of Online Sleeping Combinatorial Optimization Problems »
Satyen Kale · Chansoo Lee · David Pal -
2016 Poster: Boosting with Abstention »
Corinna Cortes · Giulia DeSalvo · Mehryar Mohri -
2016 Poster: Optimistic Bandit Convex Optimization »
Scott Yang · Mehryar Mohri -
2016 Tutorial: Theory and Algorithms for Forecasting Non-Stationary Time Series »
Vitaly Kuznetsov · Mehryar Mohri -
2015 : A Theory of Multiple Source Adaptation »
Mehryar Mohri -
2015 : Discussion Panel »
Tim van Erven · Wouter Koolen · Peter Grünwald · Shai Ben-David · Dylan Foster · Satyen Kale · Gergely Neu -
2015 : Optimal and Adaptive Algorithms for Online Boosting »
Satyen Kale -
2015 : Adaptive Online Learning »
Dylan Foster -
2015 : Learning Theory and Algorithms for Time Series »
Mehryar Mohri -
2015 Poster: Revenue Optimization against Strategic Buyers »
Mehryar Mohri · Andres Munoz -
2015 Poster: Learning Theory and Algorithms for Forecasting Non-stationary Time Series »
Vitaly Kuznetsov · Mehryar Mohri -
2015 Poster: Adaptive Online Learning »
Dylan Foster · Alexander Rakhlin · Karthik Sridharan -
2015 Spotlight: Adaptive Online Learning »
Dylan Foster · Alexander Rakhlin · Karthik Sridharan -
2015 Oral: Learning Theory and Algorithms for Forecasting Non-stationary Time Series »
Vitaly Kuznetsov · Mehryar Mohri -
2015 Poster: Online Gradient Boosting »
Alina Beygelzimer · Elad Hazan · Satyen Kale · Haipeng Luo -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2014 Workshop: NIPS Workshop on Transactional Machine Learning and E-Commerce »
David Parkes · David H Wolpert · Jennifer Wortman Vaughan · Jacob D Abernethy · Amos Storkey · Mark Reid · Ping Jin · Nihar Bhadresh Shah · Mehryar Mohri · Luis E Ortiz · Robin Hanson · Aaron Roth · Satyen Kale · Sebastien Lahaie -
2014 Poster: Optimal Regret Minimization in Posted-Price Auctions with Strategic Buyers »
Mehryar Mohri · Andres Munoz -
2014 Poster: Multi-Class Deep Boosting »
Vitaly Kuznetsov · Mehryar Mohri · Umar Syed -
2014 Spotlight: Optimal Regret Minimization in Posted-Price Auctions with Strategic Buyers »
Mehryar Mohri · Andres Munoz -
2014 Session: Oral Session 6 »
Mehryar Mohri -
2014 Poster: Conditional Swap Regret and Conditional Correlated Equilibrium »
Mehryar Mohri · Scott Yang -
2013 Workshop: Large Scale Matrix Analysis and Inference »
Reza Zadeh · Gunnar Carlsson · Michael Mahoney · Manfred K. Warmuth · Wouter M Koolen · Nati Srebro · Satyen Kale · Malik Magdon-Ismail · Ashish Goel · Matei A Zaharia · David Woodruff · Ioannis Koutis · Benjamin Recht -
2013 Poster: Adaptive Market Making via Online Learning »
Jacob D Abernethy · Satyen Kale -
2013 Poster: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2013 Oral: Adaptive Market Making via Online Learning »
Jacob D Abernethy · Satyen Kale -
2013 Spotlight: Learning Kernels Using Local Rademacher Complexity »
Corinna Cortes · Marius Kloft · Mehryar Mohri -
2012 Poster: Accuracy at the Top »
Stephen Boyd · Corinna Cortes · Mehryar Mohri · Ana Radovanovic -
2012 Poster: Spectral Learning of General Weighted Automata via Constrained Matrix Completion »
Borja Balle · Mehryar Mohri -
2012 Oral: Spectral Learning of General Weighted Automata via Constrained Matrix Completion »
Borja Balle · Mehryar Mohri -
2011 Workshop: Sparse Representation and Low-rank Approximation »
Ameet S Talwalkar · Lester W Mackey · Mehryar Mohri · Michael W Mahoney · Francis Bach · Mike Davies · Remi Gribonval · Guillaume R Obozinski -
2011 Poster: Newtron: an Efficient Bandit algorithm for Online Multiclass Prediction »
Elad Hazan · Satyen Kale -
2010 Workshop: Low-rank Methods for Large-scale Machine Learning »
Arthur Gretton · Michael W Mahoney · Mehryar Mohri · Ameet S Talwalkar -
2010 Poster: Learning Bounds for Importance Weighting »
Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2010 Poster: Non-Stochastic Bandit Slate Problems »
Satyen Kale · Lev Reyzin · Robert E Schapire -
2009 Poster: Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models »
Gideon S Mann · Ryan McDonald · Mehryar Mohri · Nathan Silberman · Dan Walker -
2009 Poster: Ensemble Nystrom Method »
Sanjiv Kumar · Mehryar Mohri · Ameet S Talwalkar -
2009 Poster: On Stochastic and Worst-case Models for Investing »
Elad Hazan · Satyen Kale -
2009 Spotlight: Efficient Large-Scale Distributed Training of Conditional Maximum Entropy Models »
Gideon S Mann · Ryan McDonald · Mehryar Mohri · Nathan Silberman · Dan Walker -
2009 Oral: On Stochastic and Worst-case Models for Investing »
Elad Hazan · Satyen Kale -
2009 Poster: Learning Non-Linear Combinations of Kernels »
Corinna Cortes · Mehryar Mohri · Afshin Rostamizadeh -
2009 Poster: Beyond Convexity: Online Submodular Minimization »
Elad Hazan · Satyen Kale -
2009 Poster: Polynomial Semantic Indexing »
Bing Bai · Jason E Weston · David Grangier · Ronan Collobert · Kunihiko Sadamasa · Yanjun Qi · Corinna Cortes · Mehryar Mohri -
2008 Workshop: Kernel Learning: Automatic Selection of Optimal Kernels »
Corinna Cortes · Arthur Gretton · Gert Lanckriet · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: Domain Adaptation with Multiple Sources »
Yishay Mansour · Mehryar Mohri · Afshin Rostamizadeh -
2008 Spotlight: Domain Adaptation with Multiple Sources »
Yishay Mansour · Mehryar Mohri · Afshin Rostamizadeh -
2008 Poster: Rademacher Complexity Bounds for Non-I.I.D. Processes »
Mehryar Mohri · Afshin Rostamizadeh -
2007 Poster: Stability Bounds for Non-i.i.d. Processes »
Mehryar Mohri · Afshin Rostamizadeh -
2007 Poster: Computational Equivalence of Fixed Points and No Regret Algorithms, and Convergence to Equilibria »
Elad Hazan · Satyen Kale -
2006 Poster: On Transductive Regression »
Corinna Cortes · Mehryar Mohri