Timezone: »
We present a comprehensive study of multilayer neural networks with binary activation, relying on the PAC-Bayesian theory. Our contributions are twofold: (i) we develop an end-to-end framework to train a binary activated deep neural network, (ii) we provide nonvacuous PAC-Bayesian generalization bounds for binary activated deep neural networks. Our results are obtained by minimizing the expected loss of an architecture-dependent aggregation of binary activated deep neural networks. Our analysis inherently overcomes the fact that binary activation function is non-differentiable. The performance of our approach is assessed on a thorough numerical experiment protocol on real-life datasets.
Author Information
Gaël Letarte (Université Laval)
Pascal Germain (INRIA)
Benjamin Guedj (Inria & University College London)
Benjamin Guedj is a tenured research scientist at Inria since 2014, affiliated to the Lille - Nord Europe research centre in France. He is also affiliated with the mathematics department of the University of Lille. Since 2018, he is a Principal Research Fellow at the Centre for Artificial Intelligence and Department of Computer Science at University College London. He is also a visiting researcher at The Alan Turing Institute. Since 2020, he is the founder and scientific director of The Inria London Programme, a strategic partnership between Inria and UCL as part of a France-UK scientific initiative. He obtained his Ph.D. in mathematics in 2013 from UPMC (Université Pierre & Marie Curie, France) under the supervision of Gérard Biau and Éric Moulines. Prior to that, he was a research assistant at DTU Compute (Denmark). His main line of research is in statistical machine learning, both from theoretical and algorithmic perspectives. He is primarily interested in the design, analysis and implementation of statistical machine learning methods for high dimensional problems, mainly using the PAC-Bayesian theory.
Francois Laviolette (Université Laval)
More from the Same Authors
-
2021 : Progress in Self-Certified Neural Networks »
Maria Perez-Ortiz · Omar Rivasplata · Emilio Parrado-Hernández · Benjamin Guedj · John Shawe-Taylor -
2023 Poster: Statistical Guarantees for Variational Autoencoders using PAC-Bayesian Theory »
Sokhna Diarra Mbacke · Florence Clerc · Pascal Germain -
2023 Poster: Learning via Wasserstein-Based High Probability Generalization Bounds »
Paul Viallard · Maxime Haddouche · Umut Simsekli · Benjamin Guedj -
2022 Poster: KSD Aggregated Goodness-of-fit Test »
Antonin Schrab · Benjamin Guedj · Arthur Gretton -
2022 Poster: Efficient Aggregated Kernel Tests using Incomplete $U$-statistics »
Antonin Schrab · Ilmun Kim · Benjamin Guedj · Arthur Gretton -
2022 Poster: On Margins and Generalisation for Voting Classifiers »
Felix Biggs · Valentina Zantedeschi · Benjamin Guedj -
2022 Poster: Online PAC-Bayes Learning »
Maxime Haddouche · Benjamin Guedj -
2021 Poster: Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound »
Valentina Zantedeschi · Paul Viallard · Emilie Morvant · Rémi Emonet · Amaury Habrard · Pascal Germain · Benjamin Guedj -
2020 Poster: PAC-Bayesian Bound for the Conditional Value at Risk »
Zakaria Mhammedi · Benjamin Guedj · Robert Williamson -
2020 Spotlight: PAC-Bayesian Bound for the Conditional Value at Risk »
Zakaria Mhammedi · Benjamin Guedj · Robert Williamson -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: PAC-Bayes Un-Expected Bernstein Inequality »
Zakaria Mhammedi · Peter Grünwald · Benjamin Guedj -
2017 : Concluding remarks »
Francis Bach · Benjamin Guedj · Pascal Germain -
2017 : Neil Lawrence, Francis Bach and François Laviolette »
Neil Lawrence · Francis Bach · Francois Laviolette -
2017 : Overture »
Benjamin Guedj · Francis Bach · Pascal Germain -
2017 : François Laviolette - A Tutorial on PAC-Bayesian Theory »
Francois Laviolette -
2017 Workshop: (Almost) 50 shades of Bayesian Learning: PAC-Bayesian trends and insights »
Benjamin Guedj · Pascal Germain · Francis Bach -
2017 Poster: Maximum Margin Interval Trees »
Alexandre Drouin · Toby Hocking · Francois Laviolette -
2014 Workshop: Second Workshop on Transfer and Multi-Task Learning: Theory meets Practice »
Urun Dogan · Tatiana Tommasi · Yoshua Bengio · Francesco Orabona · Marius Kloft · Andres Munoz · Gunnar Rätsch · Hal Daumé III · Mehryar Mohri · Xuezhi Wang · Daniel Hernández-lobato · Song Liu · Thomas Unterthiner · Pascal Germain · Vinay P Namboodiri · Michael Goetz · Christopher Berlind · Sigurd Spieckermann · Marta Soare · Yujia Li · Vitaly Kuznetsov · Wenzhao Lian · Daniele Calandriello · Emilie Morvant -
2012 Workshop: Multi-Trade-offs in Machine Learning »
Yevgeny Seldin · Guy Lever · John Shawe-Taylor · Nicolò Cesa-Bianchi · Yacov Crammer · Francois Laviolette · Gabor Lugosi · Peter Bartlett -
2011 Workshop: New Frontiers in Model Order Selection »
Yevgeny Seldin · Yacov Crammer · Nicolò Cesa-Bianchi · Francois Laviolette · John Shawe-Taylor -
2011 Poster: PAC-Bayesian Analysis of Contextual Bandits »
Yevgeny Seldin · Peter Auer · Francois Laviolette · John Shawe-Taylor · Ronald Ortner -
2009 Poster: From PAC-Bayes Bounds to KL Regularization »
Pascal Germain · Alexandre Lacasse · Francois Laviolette · Mario Marchand · Sara Shanian -
2008 Poster: A Transductive Bound for the Voted Classifier with an Application to Semi-supervised Learning »
Massih R Amini · Nicolas Usunier · Francois Laviolette -
2008 Spotlight: A Transductive Bound for the Voted Classifier with an Application to Semi-supervised Learning »
Massih R Amini · Nicolas Usunier · Francois Laviolette -
2006 Poster: A PAC-Bayes Risk Bound for General Loss Functions »
Pascal Germain · Alexandre Lacasse · Francois Laviolette · Mario Marchand -
2006 Poster: PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier »
Alexandre Lacasse · Francois Laviolette · Mario Marchand · Pascal Germain · Nicolas Usunier -
2006 Spotlight: PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier »
Alexandre Lacasse · Francois Laviolette · Mario Marchand · Pascal Germain · Nicolas Usunier