Timezone: »
Computing optimal transport (OT) between measures in high dimensions is doomed by the curse of dimensionality. A popular approach to avoid this curse is to project input measures on lower-dimensional subspaces (1D lines in the case of sliced Wasserstein distances), solve the OT problem between these reduced measures, and settle for the Wasserstein distance between these reductions, rather than that between the original measures. This approach is however difficult to extend to the case in which one wants to compute an OT map (a Monge map) between the original measures. Since computations are carried out on lower-dimensional projections, classical map estimation techniques can only produce maps operating in these reduced dimensions. We propose in this work two methods to extrapolate, from an transport map that is optimal on a subspace, one that is nearly optimal in the entire space. We prove that the best optimal transport plan that takes such "subspace detours" is a generalization of the Knothe-Rosenblatt transport. We show that these plans can be explicitly formulated when comparing Gaussian measures (between which the Wasserstein distance is commonly referred to as the Bures or Fréchet distance). We provide an algorithm to select optimal subspaces given pairs of Gaussian measures, and study scenarios in which that mediating subspace can be selected using prior information. We consider applications to semantic mediation between elliptic word embeddings and domain adaptation with Gaussian mixture models.
Author Information
Boris Muzellec (ENSAE, Institut Polytechnique de Paris)
Marco Cuturi (Google Brain & CREST - ENSAE)
Marco Cuturi is a research scientist at Apple, in Paris. He received his Ph.D. in 11/2005 from the Ecole des Mines de Paris in applied mathematics. Before that he graduated from National School of Statistics (ENSAE) with a master degree (MVA) from ENS Cachan. He worked as a post-doctoral researcher at the Institute of Statistical Mathematics, Tokyo, between 11/2005 and 3/2007 and then in the financial industry between 4/2007 and 9/2008. After working at the ORFE department of Princeton University as a lecturer between 2/2009 and 8/2010, he was at the Graduate School of Informatics of Kyoto University between 9/2010 and 9/2016 as a tenured associate professor. He joined ENSAE in 9/2016 as a professor, where he is now working part-time. He was at Google between 10/2018 and 1/2022. His main employment is now with Apple, since 1/2022, as a research scientist working on fundamental aspects of machine learning.
More from the Same Authors
-
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2021 : Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and Costs »
Meyer Scetbon · Gabriel Peyré · Marco Cuturi -
2022 Poster: Supervised Training of Conditional Monge Maps »
Charlotte Bunne · Andreas Krause · Marco Cuturi -
2022 Poster: Efficient and Modular Implicit Differentiation »
Mathieu Blondel · Quentin Berthet · Marco Cuturi · Roy Frostig · Stephan Hoyer · Felipe Llinares-Lopez · Fabian Pedregosa · Jean-Philippe Vert -
2022 Poster: FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings »
Jean Ogier du Terrail · Samy-Safwan Ayed · Edwige Cyffers · Felix Grimberg · Chaoyang He · Regis Loeb · Paul Mangold · Tanguy Marchand · Othmane Marfoq · Erum Mushtaq · Boris Muzellec · Constantin Philippenko · Santiago Silva · Maria Teleńczuk · Shadi Albarqouni · Salman Avestimehr · Aurélien Bellet · Aymeric Dieuleveut · Martin Jaggi · Sai Praneeth Karimireddy · Marco Lorenzi · Giovanni Neglia · Marc Tommasi · Mathieu Andreux -
2022 Poster: Low-rank Optimal Transport: Approximation, Statistics and Debiasing »
Meyer Scetbon · Marco Cuturi -
2022 Poster: SecureFedYJ: a safe feature Gaussianization protocol for Federated Learning »
Tanguy Marchand · Boris Muzellec · Constance Béguier · Jean Ogier du Terrail · Mathieu Andreux -
2021 Workshop: Optimal Transport and Machine Learning »
Jason Altschuler · Charlotte Bunne · Laetitia Chapel · Marco Cuturi · Rémi Flamary · Gabriel Peyré · Alexandra Suvorikova -
2020 Poster: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm »
Tianyi Lin · Nhat Ho · Xi Chen · Marco Cuturi · Michael Jordan -
2020 Spotlight: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Learning with Differentiable Pertubed Optimizers »
Quentin Berthet · Mathieu Blondel · Olivier Teboul · Marco Cuturi · Jean-Philippe Vert · Francis Bach -
2020 Poster: Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form »
Hicham Janati · Boris Muzellec · Gabriel Peyré · Marco Cuturi -
2020 Poster: Linear Time Sinkhorn Divergences using Positive Features »
Meyer Scetbon · Marco Cuturi -
2020 Oral: Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form »
Hicham Janati · Boris Muzellec · Gabriel Peyré · Marco Cuturi -
2020 Session: Orals & Spotlights Track 21: Optimization »
Peter Richtarik · Marco Cuturi -
2019 Workshop: Optimal Transport for Machine Learning »
Marco Cuturi · Gabriel Peyré · Rémi Flamary · Alexandra Suvorikova -
2019 Poster: Differentiable Ranking and Sorting using Optimal Transport »
Marco Cuturi · Olivier Teboul · Jean-Philippe Vert -
2019 Spotlight: Differentiable Ranking and Sorting using Optimal Transport »
Marco Cuturi · Olivier Teboul · Jean-Philippe Vert -
2019 Poster: Tree-Sliced Variants of Wasserstein Distances »
Tam Le · Makoto Yamada · Kenji Fukumizu · Marco Cuturi -
2018 Poster: Large Scale computation of Means and Clusters for Persistence Diagrams using Optimal Transport »
Theo Lacombe · Marco Cuturi · Steve OUDOT -
2018 Poster: Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions »
Boris Muzellec · Marco Cuturi -
2017 Workshop: Optimal Transport and Machine Learning »
Olivier Bousquet · Marco Cuturi · Gabriel Peyré · Fei Sha · Justin Solomon -
2017 Tutorial: A Primer on Optimal Transport »
Marco Cuturi · Justin Solomon -
2016 Workshop: Time Series Workshop »
Oren Anava · Marco Cuturi · Azadeh Khaleghi · Vitaly Kuznetsov · Sasha Rakhlin -
2016 Poster: Wasserstein Training of Restricted Boltzmann Machines »
Grégoire Montavon · Klaus-Robert Müller · Marco Cuturi -
2016 Poster: Stochastic Optimization for Large-scale Optimal Transport »
Aude Genevay · Marco Cuturi · Gabriel Peyré · Francis Bach -
2015 Poster: Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric »
Vivien Seguy · Marco Cuturi -
2014 Workshop: Optimal Transport and Machine Learning »
Marco Cuturi · Gabriel Peyré · Justin Solomon · Alexander Barvinok · Piotr Indyk · Robert McCann · Adam Oberman -
2013 Poster: Sinkhorn Distances: Lightspeed Computation of Optimal Transport »
Marco Cuturi -
2013 Spotlight: Sinkhorn Distances: Lightspeed Computation of Optimal Transport »
Marco Cuturi -
2009 Poster: White Functionals for Anomaly Detection in Dynamical Systems »
Marco Cuturi · Jean-Philippe Vert · Alexandre d'Aspremont -
2006 Poster: Kernels on Structured Objects Through Nested Histograms »
Marco Cuturi · Kenji Fukumizu