Timezone: »
Poster
On the convergence of single-call stochastic extra-gradient methods
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos
Wed Dec 11 10:45 AM -- 12:45 PM (PST) @ East Exhibition Hall B + C #160
Variational inequalities have recently attracted considerable interest in machine learning as a flexible paradigm for models that go beyond ordinary loss function minimization (such as generative adversarial networks and related deep learning systems). In this setting, the optimal O(1/t) convergence rate for solving smooth monotone variational inequalities is achieved by the Extra-Gradient (EG) algorithm and its variants. Aiming to alleviate the cost of an extra gradient step per iteration (which can become quite substantial in deep learning), several algorithms have been proposed as surrogates to Extra-Gradient with a single oracle call per iteration. In this paper, we develop a synthetic view of such algorithms, and we complement the existing literature by showing that they retain a $O(1/t)$ ergodic convergence rate in smooth, deterministic problems. Subsequently, beyond the monotone deterministic case, we also show that the last iterate of single-call, stochastic extra-gradient methods still enjoys a $O(1/t)$ local convergence rate to solutions of non-monotone variational inequalities that satisfy a second-order sufficient condition.
Author Information
Yu-Guan Hsieh (Univ. Grenoble Alpes)
Franck Iutzeler (Univ. Grenoble Alpes)
Jérôme Malick (CNRS and LJK)
Panayotis Mertikopoulos (CNRS (French National Center for Scientific Research))
More from the Same Authors
-
2022 : Differentially Private Federated Quantiles with the Distributed Discrete Gaussian Mechanism »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 : Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 : Diffusion Prior for Online Decision Making: A Case Study of Thompson Sampling »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton · Patrick Blöbaum -
2022 : Tackling Distribution Shifts in Federated Learning with Superquantile Aggregation »
Krishna Pillutla · Yassine Laguel · Jérôme Malick · Zaid Harchaoui -
2022 Poster: No-regret learning in games with noisy feedback: Faster rates and adaptivity via learning rate separation »
Yu-Guan Hsieh · Kimon Antonakopoulos · Volkan Cevher · Panayotis Mertikopoulos -
2022 Poster: On the convergence of policy gradient methods to Nash equilibria in general stochastic games »
Angeliki Giannou · Kyriakos Lotidis · Panayotis Mertikopoulos · Emmanouil-Vasileios Vlatakis-Gkaragkounis -
2022 Poster: Uplifting Bandits »
Yu-Guan Hsieh · Shiva Kasiviswanathan · Branislav Kveton -
2021 Poster: Fast Routing under Uncertainty: Adaptive Learning in Congestion Games via Exponential Weights »
Dong Quan Vu · Kimon Antonakopoulos · Panayotis Mertikopoulos -
2021 Poster: Sifting through the noise: Universal first-order methods for stochastic variational inequalities »
Kimon Antonakopoulos · Thomas Pethick · Ali Kavis · Panayotis Mertikopoulos · Volkan Cevher -
2021 Poster: Adaptive First-Order Methods Revisited: Convex Minimization without Lipschitz Requirements »
Kimon Antonakopoulos · Panayotis Mertikopoulos -
2021 Poster: On the Rate of Convergence of Regularized Learning in Games: From Bandits and Uncertainty to Optimism and Beyond »
Angeliki Giannou · Emmanouil-Vasileios Vlatakis-Gkaragkounis · Panayotis Mertikopoulos -
2020 Poster: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Spotlight: No-Regret Learning and Mixed Nash Equilibria: They Do Not Mix »
Emmanouil-Vasileios Vlatakis-Gkaragkounis · Lampros Flokas · Thanasis Lianeas · Panayotis Mertikopoulos · Georgios Piliouras -
2020 Poster: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2020 Poster: Online Non-Convex Optimization with Imperfect Feedback »
Amélie Héliou · Matthieu Martin · Panayotis Mertikopoulos · Thibaud Rahier -
2020 Poster: On the Almost Sure Convergence of Stochastic Gradient Descent in Non-Convex Problems »
Panayotis Mertikopoulos · Nadav Hallak · Ali Kavis · Volkan Cevher -
2020 Spotlight: Explore Aggressively, Update Conservatively: Stochastic Extragradient Methods with Variable Stepsize Scaling »
Yu-Guan Hsieh · Franck Iutzeler · Jérôme Malick · Panayotis Mertikopoulos -
2019 Poster: An adaptive Mirror-Prox method for variational inequalities with singular operators »
Kimon Antonakopoulos · Veronica Belmega · Panayotis Mertikopoulos -
2018 : Poster spotlight »
Tianbao Yang · Pavel Dvurechenskii · Panayotis Mertikopoulos · Hugo Berard -
2018 Poster: Bandit Learning in Concave N-Person Games »
Mario Bravo · David Leslie · Panayotis Mertikopoulos -
2018 Poster: Learning in Games with Lossy Feedback »
Zhengyuan Zhou · Panayotis Mertikopoulos · Susan Athey · Nicholas Bambos · Peter W Glynn · Yinyu Ye -
2017 Poster: Countering Feedback Delays in Multi-Agent Learning »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Peter W Glynn · Claire Tomlin -
2017 Poster: Learning with Bandit Feedback in Potential Games »
Amélie Héliou · Johanne Cohen · Panayotis Mertikopoulos -
2017 Poster: Stochastic Mirror Descent in Variationally Coherent Optimization Problems »
Zhengyuan Zhou · Panayotis Mertikopoulos · Nicholas Bambos · Stephen Boyd · Peter W Glynn