Timezone: »
We propose to represent shapes as the deformation and combination of learnt elementary 3D structures. We demonstrate this decomposition in learnt elementary 3D structures is highly interpretable and leads to clear improvements in 3D shape generation and matching. More precisely, we present two complementary approaches to learn elementary structures in a deep learning framework: (i) continuous surface deformation learning and (ii) 3D structure points learning. Both approaches can be extended to abstract structures of higher dimensions for improved results. We evaluate our method on two very different tasks: ShapeNet objects reconstruction and dense correspondences estimation between human scans. Qualitatively our approach provides interpretable and repeatable results. Quantitatively, we show an important 16% boost for 3D object generation via surface deformation, as well as a clear 6% improvement over state of the art correspondence results on the FAUST inter challenge.
Author Information
Theo Deprelle (École des ponts ParisTech)
Thibault Groueix (École des ponts ParisTech)
Matthew Fisher (Adobe Research)
Vladimir Kim (Adobe)
Bryan Russell (Adobe)
Mathieu Aubry (École des ponts ParisTech)
More from the Same Authors
-
2021 : Spherical Perspective on Learning with Normalization Layers »
Simon Roburin · Yann de Mont-Marin · Andrei Bursuc · Renaud Marlet · Patrick Pérez · Mathieu Aubry -
2021 : Spherical Perspective on Learning with Normalization Layers »
Simon Roburin · Yann de Mont-Marin · Andrei Bursuc · Renaud Marlet · Patrick Pérez · Mathieu Aubry -
2022 Poster: Monocular Dynamic View Synthesis: A Reality Check »
Hang Gao · Ruilong Li · Shubham Tulsiani · Bryan Russell · Angjoo Kanazawa -
2021 Poster: Re-ranking for image retrieval and transductive few-shot classification »
Xi SHEN · Yang Xiao · Shell Xu Hu · Othman Sbai · Mathieu Aubry -
2021 Poster: A Multi-Implicit Neural Representation for Fonts »
Pradyumna Reddy · Zhifei Zhang · Zhaowen Wang · Matthew Fisher · Hailin Jin · Niloy Mitra -
2021 Poster: MarioNette: Self-Supervised Sprite Learning »
Dmitriy Smirnov · MICHAEL GHARBI · Matthew Fisher · Vitor Guizilini · Alexei Efros · Justin Solomon -
2020 Poster: Deep Transformation-Invariant Clustering »
Tom Monnier · Thibault Groueix · Mathieu Aubry -
2020 Oral: Deep Transformation-Invariant Clustering »
Tom Monnier · Thibault Groueix · Mathieu Aubry -
2016 Poster: SURGE: Surface Regularized Geometry Estimation from a Single Image »
Peng Wang · Xiaohui Shen · Bryan Russell · Scott Cohen · Brian Price · Alan Yuille